

Area to cut and punch

.9375

I
S
B
N

9
7
8
-
1
-
1
1
8
-
0
1
2
5
2
-
9

TE
CH

NICAL STUFF

Welcome to HTML5 For Dummies Quick Reference. Keep this book within
arm’s reach to find quick answers to your questions.

This is a For Dummies book, so you have to expect
some snazzy icons, right? I don’t disappoint. Here’s
what you’ll see:

This is where I pass along any small insights I may
have gleaned in our travels.

A lot of details here. I point out something important
that’s easy to forget with this icon.

Watch out! Anything I mark with this icon is a place
where things have blown up for me or my students. I
point out any potential problems with this icon.

I can’t really help being geeky once in a while. Every
so often I want to explain something a little deeper.
Read this to impress people at your next computer
science cocktail party or skip it if you really don’t
need the details.

HTML is the predominant programming language used to create Web pages.
HTML5 is the most recent update to the HTML standard which is maintained
and governed by the World Wide Web Consortium (W3C). HTML5 represents
a major change to HTML — arguably the most substantial change since the
development of XHTML. HTML5 has enhanced rich media, geolocation,
database and mobile capabilities, and is now able to script APIs.

This book covers the fundamentals for developing Web sites using HTML5
by utilizing clear-cut tasks, code examples, step-by-step instructions, and
easy-to-follow advice. This book provides seasoned and new Web programmers
and developers with a fast reference for getting up to speed on HTML5.

Mobile Apps

There’s a Dummies App
for This and That
With more than 200 million books in print and over
1,600 unique titles, Dummies is a global leader in
how-to information. Now you can get the same great
Dummies information in an App. With topics such as
Wine, Spanish, Digital Photography, Certification, and
more, you’ll have instant access to the topics you
need to know in a format you can trust.

To get information on all our Dummies apps, visit the following:

www.Dummies.com/go/mobile from your computer.

www.Dummies.com/go/iphone/apps from your phone.

by Andy Harris

HTML5
FOR

DUMmIES
‰

Q U I C K R E F E R E N C E

01_9781118012529-ffirs.indd i01_9781118012529-ffirs.indd i 3/21/11 8:51 AM3/21/11 8:51 AM

HTML5 For Dummies® Quick Reference

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2011 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978)
750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department,
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.
wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the Rest of Us!, The
Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything Easier, and related trade dress
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United States and other coun-
tries, and may not be used without written permission. All other trademarks are the property of their respective owners.
Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS
OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND
SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A
PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERI-
ALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS
WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL,
ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES
OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR
SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS
REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES
NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR
WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT
INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK
WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within the U.S.
at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

Library of Congress Control Number: 2011924127

ISBN: 978-1-118-01252-9

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

01_9781118012529-ffirs.indd ii01_9781118012529-ffirs.indd ii 3/21/11 8:51 AM3/21/11 8:51 AM

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport

About the Author
Andy Harris once owned a TRS-80 Model I. It’s still in the garage. He remembers
fondly typing BASIC code into that machine and wondering how it really worked.
He eventually taught himself enough programming to work as a consultant while
pursuing a career in special education. He now teaches for Indiana University —
Purdue University / Indianapolis as a Senior Lecturer in Computer Science. He
teaches Web programming, game development, and Freshman Computer
Science classes.

01_9781118012529-ffirs.indd iii01_9781118012529-ffirs.indd iii 3/21/11 8:51 AM3/21/11 8:51 AM

01_9781118012529-ffirs.indd iv01_9781118012529-ffirs.indd iv 3/21/11 8:51 AM3/21/11 8:51 AM

Dedication
I dedicate this book to Jesus Christ, my personal savior, and to Heather, the joy
in my life. I also dedicate this project to Benjamin, Jacob, Matthew, and
Elizabeth. I love each of you.

Author’s Acknowledgments
People often think of writing as a solo sport, but I know better. Thanks to
Heather, for being amazing (again and again). Thank you Katie Feltman, for
another interesting project, and for being a consistent friend. Thanks to Blair
Pottenger for all your support on this book. You wrestled this monster into
decent shape. Thanks very much to Heidi Unger for your editing help. It took
more than a minute to win this one. Thank you Ronald Norman for the technical
edit. You found a number of goofy errors that would have confused students.
Thank you so much for your vigilance.

Thanks also to the many people at Wiley who the author never gets to meet. I
appreciate your contributions. Thank you also to the open-source community
which creates so many excellent tools. A big thanks to the IUPUI family for
supporting me through this and so many other projects, especially Michele
and Lingma.

Finally, thank you to my extended family — the Friday morning guys, and the
Sunday evening families. I’m lucky to have a job where I get to publicly thank
you for all you add to my life.

01_9781118012529-ffirs.indd v01_9781118012529-ffirs.indd v 3/21/11 8:51 AM3/21/11 8:51 AM

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments at http://dummies.custhelp.com. For other
comments, please contact our Customer Care Department within the U.S. at 877-762-2974, outside the U.S. at
317-572-3993, or fax 317-572-4002.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and Media Development

Project Editor: Blair J. Pottenger

Acquisitions Editor: Katie Feltman

Copy Editor: Heidi Unger

Technical Editor: Ronald Norman

Editorial Manager: Kevin Kirschner

Media Development Project Manager:
Laura Moss-Hollister

Media Development Assistant Project Manager:
Jenny Swisher

Media Development Associate Producers:
Josh Frank, Marilyn Hummel, Douglas Kuhn,
and Shawn Patrick

Editorial Assistant: Amanda Graham

Sr. Editorial Assistant: Cherie Case

Composition Services

Project Coordinator: Katie Crocker

Layout and Graphics: Erin Zeltner

Proofreaders: John Greenough, Sossity R. Smith

Indexer: Potomac Indexing LLC

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Composition Services

Debbie Stailey, Director of Composition Services

01_9781118012529-ffirs.indd vi01_9781118012529-ffirs.indd vi 3/21/11 8:51 AM3/21/11 8:51 AM

http://dummies.custhelp.com

A Note About the Term HTML5
As this book was nearing completion, the World Wide Web Consortium (W3C)
announced that the change of the upcoming version of HTML would not be
HTML5, but simply HTML. They reasoned that a collaborative project like an
HTML standard is an evolution rather than a strict milestone. When HTML5 is
reasonably universal, there will be no need to call it HTML5, but simple HTML
will do.

For the purposes of this book, it is important to distinguish between the current
state of the art and the evolving standard that is the focus of this work. For that
reason, I refer to the emerging standards as HTML5 to distinguish them from the
older approaches to Web development, and keep the term HTML5 in the title.

Companion Resources On the Web
Be sure to check out my Web site for working examples of every code fragment
in the book: www.aharrisbooks.net/h5qr.

Also check out this book’s companion Web site at www.dummies.com/go/
html5fdqr to access “Bonus Part 1: Using JavaScript” for a review (or preview)
of computer programming in JavaScript. Programming is a complex business,
and learning how to program in JavaScript deserves its own book; see my
JavaScript and AJAX For Dummies (Wiley) or HTML, XHTML, and CSS All-In-One
For Dummies, 2nd edition (Wiley) books for a more complete treatment.

01_9781118012529-ffirs.indd vii01_9781118012529-ffirs.indd vii 3/21/11 8:51 AM3/21/11 8:51 AM

www.dummies.com/go/html5fdgr
http://www.aharrisbooks.net/h5qr

01_9781118012529-ffirs.indd viii01_9781118012529-ffirs.indd viii 3/21/11 8:51 AM3/21/11 8:51 AM

Table of Contents

Part 1: Moving on to HTML51
A Quick History of HTML ... 2

A bit of ancient history .. 2
And the first browser war begins 2
A new challenger arises from the ashes ... 3
HTML 4 was getting old ... 4

Getting to Know the Real HTML5 .. 4
HTML5 Is More than HTML! ... 5

HTML ... 6
CSS ... 6
JavaScript .. 7
Server technologies ... 7

Looking At Browser Features .. 8
Assessing your browser’s capabilities .. 8
Checking for features in your code ... 9

Picking a Suitable Browser .. 12
Using Chrome Frame to Add Support to IE.. 13

Part 2: HTML Foundations15
Exploring HTML and XHTML ... 16

Appreciating HTML .. 16
Emergence of XHTML .. 17
It’s alive, and it’s HTML5! .. 18
Setting up a basic HTML page .. 19

Fleshing Out Your Page .. 22
Adding images .. 22
Including links .. 24
Making lists and tables .. 26
Utilizing tables .. 28

Making a Form ... 30
Form structure tags ... 33
Constructing text input ... 34
Creating password fields .. 35
Erecting a multiline text box .. 35
Forming drop-down lists ... 36
Making checkboxes ... 37
Popping in radio buttons .. 38
Putting in action buttons .. 39

Validating Your Pages .. 40

02_9781118012529-ftoc.indd ix02_9781118012529-ftoc.indd ix 3/21/11 8:51 AM3/21/11 8:51 AM

x HTML5 For Dummies Quick Reference

Part 3: New or Changed HTML5 Elements41
Semantic Page Elements... 42

address .. 42
article ... 42
aside... 43
footer ... 43
header.. 44
hgroup ... 44
menu .. 44
nav ... 45
section ... 45

Inline Semantic Elements ... 46
command .. 46
details .. 47
dfn .. 47
figcaption .. 47
figure .. 48
summary/details .. 48
time .. 48
wbr ... 49

Media Elements ... 49
audio .. 49
canvas .. 51
embed .. 53
source .. 54
svg .. 54
video .. 55

Ruby Elements ... 56
ruby.. 56
rt ... 56
rp .. 56

Part 4: New and Modified Form Elements57
New Form Elements .. 58

datalist ... 58
fieldset ... 58
keygen ... 59
label ... 59
meter ... 60
output .. 61
progress .. 61

New Form Element Attributes ... 62
autofocus .. 62
pattern ... 62
placeholder ... 63
required ... 63
Validation .. 63

02_9781118012529-ftoc.indd x02_9781118012529-ftoc.indd x 3/21/11 8:51 AM3/21/11 8:51 AM

New Form Input Types ... 64
color ... 65
date .. 65
datetime .. 65
datetime-local ... 66
email .. 67
month .. 67
number .. 67
range .. 68
search .. 69
tel ... 69
time .. 70
url ... 70
week ... 70

Part 5: Formatting with CSS71
A Quick Overview of CSS .. 72

Employing local styles ... 74
Making use of ids and classes .. 77
Managing levels of CSS .. 80

Managing the Appearance of Your Page .. 82
Comprehending hex colors .. 82
Editing text .. 85
Joining the border patrol .. 89
Putting in background images .. 90

Using Float Positioning ... 93
Getting to know the display types ... 95
Having a block party .. 96
Floating to a two-column look .. 97
Cleaning up the form ... 98
Using absolute positioning ... 100

Part 6: New and Improved CSS Elements103
CSS3’s New Selection Tools ... 104

Attribute selection ... 104
not .. 104
nth-child .. 104
Other new pseudo-classes .. 106

Downloadable Fonts and Text Support .. 106
@font-face .. 106
Column support ... 107
text-stroke ... 108
text-shadow .. 109

Flexible Box Layout Model ... 110
Creating a flexible box layout ... 110
Viewing a flexible box layout .. 111
. . . And now for a little reality .. 113

Table of Contents xi

02_9781118012529-ftoc.indd xi02_9781118012529-ftoc.indd xi 3/21/11 8:51 AM3/21/11 8:51 AM

New Visual Elements .. 114
Color values .. 114
Gradients ... 115
Image borders .. 118
Reflections .. 119
Rounded corners ... 122
Shadows .. 122
Transformations... 124
Transition animation ... 126
Transparency ... 128

Part 7: Changes in JavaScript129
Behold: The New JavaScript Selection Options .. 130

document.getElementsByClassName() .. 130
document.getElementsByTagName() ... 130
document.querySelector() ... 131
document.querySelectorAll() .. 131

Data Options .. 131
Achieving offline cache ... 132
Local storage .. 134
WebSQL database .. 139

Miscellaneous New JavaScript Features .. 143
Geolocation ... 143
Notifications ... 146
Web sockets .. 148
Web workers ... 156

Part 8: Working with the Canvas163
Canvas Basics .. 164

Setting up the canvas .. 164
Understanding how canvas works ... 165

Controlling Fill and Stroke Styles .. 166
Colors .. 166
Gradients ... 166
Patterns ... 169

Drawing Essential Shapes .. 171
Drawing rectangles .. 171
Drawing text.. 172
Enhancing shapes with shadows ... 173

Drawing More Complex Shapes .. 175
Line-drawing options ... 176
Making arcs and circles... 179
Making quadratic curves .. 181
Producing a bezier curve .. 183

xii HTML5 For Dummies Quick Reference

02_9781118012529-ftoc.indd xii02_9781118012529-ftoc.indd xii 3/21/11 8:51 AM3/21/11 8:51 AM

Images ... 184
Drawing an image on the canvas ... 185
Drawing part of an image .. 186

Manipulating Images with Transformations .. 187
Building a transformed image .. 188
Some key points about transformations ... 191

Using Animation .. 191
Basic structure of the animation loop ... 191
Creating the constants .. 192
Deploying the animation ... 193
Giving animation to the current frame .. 193
Moving an element ... 195
Now we’re bouncing off the walls .. 197

Working with Pixel Manipulation .. 197

Index ..201

Table of Contents xiii

02_9781118012529-ftoc.indd xiii02_9781118012529-ftoc.indd xiii 3/21/11 8:51 AM3/21/11 8:51 AM

xiv HTML5 For Dummies Quick Reference

02_9781118012529-ftoc.indd xiv02_9781118012529-ftoc.indd xiv 3/21/11 8:51 AM3/21/11 8:51 AM

Moving on to HTML5
HTML5 is the newest incarnation of the HTML family of languages. HTML, which
stands for HyperText Markup Language, is one of the main reasons the Web is
as powerful and useful as it is. HTML is a reasonably simple system of plain-text
codes that provide the structure of all Web pages on the Internet.

In this part, you take a quick look at how HTML5 fits in the history of the Web,
and put together a few tools you’ll need to get started.

 Be sure to check out my Web site for working examples of every code fragment
in the book: www.aharrisbooks.net/h5qr.

In this part . . .

✓ Looking at the History of HTML

✓ Understanding What HTML5 Is

✓ Running Tests for Browser Features

✓ Deciding on a Suitable Browser

✓ Utilizing Chrome Frame to Add Support to IE

Part 1

03_9781118012529-ch01.indd 103_9781118012529-ch01.indd 1 3/21/11 9:36 AM3/21/11 9:36 AM

2 Part 1: Moving on to HTML5

A Quick History of HTML
HTML is a key part of the Internet. It has a short but extremely vibrant history.
In order to understand what HTML5 is about, it’s useful to look at where it came
from. The Internet (and the Web in particular) has been changing at a dizzying
pace. HTML has been trying to keep up.

When HTML was first devised, it comprised a handful of tags, and HTML did
little more than determine how a page was laid out. As the Web matured, many
features were added. Today’s Internet is still about documents, but it’s also
about applications. Today’s Web sites are dynamic interactive applications.

The kinds of devices used on the Internet are changing, too. In the early days,
only desktop computers used the Web. Now cellphones and mobile devices are
among the most important players on the Web. They require a different way of
thinking than the standard desk-based behemoths of a few years ago.

It’s time for a fresh new set of standards that will help support the way people
are using the Internet today. HTML5 is that set of standards.

A bit of ancient history

In the distant mists of time (1989) Tim Berners-Lee created a new system of con-
necting electronic documents. He devised a simple language that allowed docu-
ment authors to link various documents together with limited formatting
options. This language was called HTML.

At that point, the Internet existed, but it was mainly accessed by basic com-
mand-line programs, and was not easy to use. HTML (and some other underly-
ing technologies) was designed from the beginning to be easy to work with, and
to create documents that were easy for users to manage. The design of HTML
was deliberately kept simple, so as many people as possible could participate in
the process of building documents in this new format.

Of course, the Web took off in a very major way, and soon Web pages became
ubiquitous. It became clear that the simple features in basic HTML were not
enough to satisfy the interests of the many people who were now building Web
pages.

And the first browser war begins . . .

As various organizations started building Web browsers (the tools that read
HTML and display it to the user), they began competing by adding new HTML
features. By 1993, the Mosaic browser included the ability to add images (which
were not part of the original specification). Many browsers were being created
by small teams all around the world, and each had its own set of new features.

By 1994, one platform emerged as the dominant browser. Netscape Navigator was
a profoundly successful browser. At the same time, there were working groups

03_9781118012529-ch01.indd 203_9781118012529-ch01.indd 2 3/21/11 8:52 AM3/21/11 8:52 AM

A Quick History of HTML 3

forming to address the lack of standards in the Web browser world. The most
important of these groups was called the World Wide Web Consortium (W3C)
headed by Tim Berners-Lee (the same guy who started all this mess). However,
Netscape had such a dominant position that Netscape representatives often
skipped the standards meetings and created whatever features they wanted.

Microsoft did not come into the browser world until 1995. Internet Explorer (IE)
was designed to compete directly with Netscape’s browser. For a time (some-
times called the first browser wars), Netscape and Microsoft were in an arms
race, each trying to produce exclusive features that would steer developers
toward their own vision of the Web.

While there was a standards body in place, the reality was both Netscape and
Microsoft added whatever features they wanted and basically ignored the W3C.
There was some small progress made on Web standards. HTML 2 was adopted as
a standard in 1994/1995 (although none of the manufacturers stuck with it com-
pletely). HTML 3.2 was released in 1997, followed by HTML 4 in Spring of 1998.

By about the same time HTML 4 was gaining traction, it became clear that
Microsoft was dominating the browser space. By 2002, Internet Explorer was
used by approximately 95 percent of Internet users. With that kind of clout, the
future of HTML was almost entirely in Microsoft’s hands, and efforts of standards
bodies were largely irrelevant. By any measure, Microsoft won the first browser
war. Internet Explorer 6 (which used mainly HTML 4) was the only browser that
really mattered, and there was very little innovation for several years.

A new challenger arises from the ashes

However, there were some new browsers that challenged Microsoft’s domi-
nance. The Firefox browser (first released in 2004) in particular was especially
important, as it introduced a number of innovative features and followed most
of the standards of the W3C working group. Firefox (and to a lesser extent other
browsers like Apple’s Safari, Opera, and eventually Google Chrome) shook up
the Web. These other browsers tended to be more committed to following stan-
dards than IE was, and they prompted new versions of IE following a long era of
stagnation. Even Microsoft began to at least pay lip service to the notion of stan-
dards, promising more standards compliance in each of the new versions of IE
introduced. Some consider this the opening of the second browser war, with
various developers competing for share of the browser market.

However, there is a difference this time around. The Web is no longer a novelty,
but now a key part of business and society. A Web-based document is now held to
the same visual standards as printed documents, and HTML 4 is simply not capa-
ble of easily meeting this standard. In fact, the entire notion of the Web as a series
of documents is being challenged. Web pages are being replaced by Web applica-
tions. Much of what people now do on the Internet isn’t about reading documents
any more. Today, developers are using the Web itself as a programming interface.

03_9781118012529-ch01.indd 303_9781118012529-ch01.indd 3 3/21/11 8:52 AM3/21/11 8:52 AM

4 Part 1: Moving on to HTML5

HTML 4 was getting old

Changes in the Web required a change in the thinking about document stan-
dards. HTML 4 was clearly not up to the task of supporting modern Web devel-
opment. The various proprietary tags added through the years added some
visual flexibility, but not nearly enough. There was not a satisfying solution for
page layout or font management. There was a set of features for entering form
data, but these tools were limited and ugly. Most browsers featured a form of
the JavaScript programming language, but the implementations varied wildly,
and making a real application using Web technologies was a chancy proposition.

The W3C introduced XHTML in 2002 to address some of these concerns. XHTML
was proposed as a version of HTML adhering to the stricter standards of the
XML markup language. XHTML is much less forgiving than HTML, so if a page
meets the stringent requirements of the standard, it is (presumably) well-
behaved and predictable. Unfortunately, the idealism of the XHTML movement
was never realized. Creating valid XHTML documents proved difficult enough
that very few developers tried. Browsers rendered inaccurate XHTML code
decently (if not perfectly). In fact, most browsers didn’t really render XHTML at
all, but quietly converted it to a form of HTML. There was little incentive for
developers to adhere to XHTML standards (unless they were taking my class).

In order to get the functionality that was missing from HTML, many developers
turned to plug-in technology like Java Applets and embedded Flash. Java never
caught on as a client-side environment (although it remains extremely important
in other applications) but Flash was very popular for a time. Unfortunately,
Flash introduces problems of its own. The content of a Flash applet can only be
modified by a Flash editor, and it cannot be read (at least easily) by search
engines. Many of the new features of HTML5 (particularly the font support and
the canvas tag) can be seen as a direct response to Flash.

The W3C moved to create a new form of XHTML called XHTML 2.0, but in the
mean time, a second group called WHATWG (Web Hypertext Application
Technology Working Group) began working on their own competing standard,
which came to be known as HTML5. The main reason for these competing stan-
dards was a sense that XHTML was too rigid, and was still focused on HTML as a
document language. Part of the motivation for HTML5 was to create a frame-
work for building Web applications that would really be used by developers.
Eventually, W3C dropped support for XHTML 2 and is now supporting the
WHATG proposal, so HTML5 appears to be the next standard.

Getting to Know the Real HTML5
The WHATWG group seems to have learned a few lessons from history. The
design of HTML5 indicates these priorities:

03_9781118012529-ch01.indd 403_9781118012529-ch01.indd 4 3/21/11 8:52 AM3/21/11 8:52 AM

A Quick History of HTML — HTML5 Is More than HTML! 5

 ✓ The core language should be simple. HTML5 is quite a bit cleaner than
XHTML. The document type in particular is a breath of fresh air compared
to the nonsense you have to write to start an XHTML page. Every tag is
about describing some feature of the page. Most of the tags are plain
English with few abbreviations.

 ✓ Markup is based on semantics. One of the original ideas in HTML was
markup based on meaning rather than details. For example, a headline is
simply marked as <h1> rather than specifying a particular font size or
typeface. HTML5 returns to this tradition, adding a number of new tags to
describe common parts of a page.

 ✓ CSS is used for style details. Like XHTML, HTML5 relies heavily on another
language, called CSS (Cascading Style Sheets), to handle the details of how
a particular element looks. In essence, HTML describes what a page ele-
ment is, and CSS describes how that element looks. HTML5 does not con-
tain tags like or <center> because these characteristics are
handled in a more flexible way by CSS.

 ✓ Pages are often applications. Forms (the elements that allow users to
enter data in a Web site) have been a part of HTML since the beginning,
but they have not seen much improvement over the years. HTML5 adds a
number of very exciting new form elements that make HTML a much better
tool for interacting with users.

 ✓ JavaScript is central. Most Web browsers have had a form of the
JavaScript (JS) programming language built in for years. However, it
was difficult to take JavaScript very seriously because it had a number of
limitations. Some limitations were because of legitimate security concerns,
and others were simply poor or incompatible implementation. With the
advent of new powerful JavaScript engines and a new paradigm called
AJAX (Asynchronous JavaScript and XML), JavaScript has re-emerged as
a powerful and important programming environment. Many of the most
interesting features of HTML5 (like the canvas tag) are mainly improve-
ments in the JavaScript language. (The canvas tag is an HTML tag, but it
doesn’t do anything interesting without JavaScript.)

HTML5 Is More than HTML!
It’s a little unfortunate that this technology has been called HTML5, because the
HTML language is actually only one part of a much bigger picture. In truth, the
thing we call HTML5 is the integration of several different technologies (HTML,
CSS, and JavaScript, and server-based technologies), which each have their own
role as follows:

03_9781118012529-ch01.indd 503_9781118012529-ch01.indd 5 3/21/11 8:52 AM3/21/11 8:52 AM

6 Part 1: Moving on to HTML5

HTML

Of course, there have been changes to the HTML language itself. A few tags
have been added to the HTML 4 standard, and a number have been taken away.
However, HTML5 remains backwards-compatible with HTML 4, so there’s no abso-
lute requirement to write your code in the HTML5 standard. Adapting from HTML
4 to HTML5 is probably the easiest part of moving to the complete HTML mindset.

Here are the main HTML features:

 ✓ Semantic markup: HTML5 now includes new tags that describe parts of a
document. Now there are dedicated tags for navigation elements, articles,
sections, headers, and footers.

 ✓ New form elements: HTML5 forms have some major updates. There are
several new versions of the <input> element, allowing users to pick
colors, numbers, e-mail addresses, and dates with easy-to-use elements.

 ✓ Media elements: At long last, HTML5 has native support for audio and
video with tags similar to the tag.

 ✓ canvas tag: The canvas tag allows the programmer to build graphics
interactively. This capability will allow for very intriguing capabilities like
custom gaming and interface elements.

CSS

Probably the biggest adjustment for those used to HTML 4 isn’t really the HTML
itself, but the changing relationship between HTML and CSS. In HTML5 (like in
XHTML), the markup language only describes what various elements mean. CSS
is used to describe how things look. If you’re really going to switch to HTML5,
you can no longer use tags like and <center>, which are about describ-
ing details. CSS could be considered an optional add-on to HTML 4, but it’s cen-
tral to the HTML5 way of thinking. If you haven’t yet learned CSS, it’s definitely
time. CSS is a different way of thinking, but it’s incredibly powerful and flexible.
Along with the HTML5 standard comes a new standard for CSS, called CSS3. It’s
nearly impossible to talk about HTML5 without also including CSS3 because
they’re so closely related. Here are the main new features:

 ✓ Embedded font support: With this long-awaited tool, you can include a
font with a Web page, and it will render even if the user doesn’t have the
font installed on her operating system.

 ✓ New selectors: Selectors are used to describe a chunk of code to be modified.
CSS3 now supports new selectors that let you choose every other element, as
well as specific sub-elements (different types of input tags, for example).

 ✓ Columns: HTML has never had decent support for columns, and all kinds
of hacks have been used to overcome this shortcoming. Finally, CSS
includes the ability to break an element into any number of columns easily.

03_9781118012529-ch01.indd 603_9781118012529-ch01.indd 6 3/21/11 8:52 AM3/21/11 8:52 AM

HTML5 Is More than HTML! 7

 ✓ Visual enhancements: CSS has a number of interesting new capabilities:
transparency, shadows, rounded corners, animations, gradients, and trans-
formations. These provide a profound new level of control over the
appearance of a page.

JavaScript

If HTML describes what parts of the document are, and CSS describe how these
parts look, JavaScript is used to define how elements act. JavaScript is a full-blown
programming language, and it deserves its own book (which, of course it has; look
to my book JavaScript and AJAX For Dummies [Wiley] for one example). It is not
possible to describe JavaScript completely in this reference guide, but JavaScript
is a very critical part of the HTML5 point of view. A few of HTML5’s most interest-
ing features (the canvas tag, geolocation, and local data storage, for example) are
accessible only through JavaScript. I describe these features in this book. See
Bonus Part 1 for an overview of JavaScript if you need a review or an introduction.

 ✓ Vector graphics support: Vector-based graphics provide an interesting
alternative to traditional graphics because they can be created on the fly
through code. HTML5 actually has two ways to do this: through SVG
(Scalable Vector Graphics) and the canvas tag.

 ✓ New selectors: Most JavaScript programming begins by grabbing an ele-
ment by ID. HTML5 now allows you to select elements by tag name, or by
the same mechanisms you use to select elements in CSS.

 ✓ Local storage mechanisms: Previous versions of HTML allowed very lim-
ited storage of information on the client. HTML5 now allows the developer
to store data on the client. There is even a built-in database manager that
accepts SQL commands.

 ✓ Geolocation: This interesting feature uses a variety of mechanisms to
determine where the user is located.

Server technologies

Modern Web development is about communication. All of the technologies that
make up HTML5 reside in the Web browser, which is an important part of the
Web. However, an equally important part of Web development is a raft of technol-
ogies that live on the Web server. Many of the most interesting things happening
today use technologies like PHP or ASP to run programs that create Web pages.
Many interesting applications also use database programs like Oracle or MySQL
to manage large amounts of data. The advent of AJAX has made integration
between those technologies and the browser much easier. Interesting as these
tools are, I do not focus on them in this reference book. If you’re interested in
them, please see my book HTML, XHTML, CSS All-in-One For Dummies (Wiley) for a
thorough treatment of these and other topics.

03_9781118012529-ch01.indd 703_9781118012529-ch01.indd 7 3/21/11 8:52 AM3/21/11 8:52 AM

8 Part 1: Moving on to HTML5

Looking At Browser Features
As you can see in the history of HTML, calling something a standard doesn’t
make it so. Officially, HTML5 hasn’t been accepted yet, and there isn’t a single
popular browser that implements all of its features. If that’s the case, you might
wonder if it’s worth it to study this technology yet. I think so, for these reasons:

 ✓ Most of the ideas are accepted. While HTML5 itself has not yet been rati-
fied as a formal standard, most of the critical ideas are available today.
Today’s Web browsers will work fine with HTML5 even if they don’t know
how to do all the cool things with it.

 ✓ There is little doubt that HTML5 is the new standard. W3C has essentially
conceded that XHTML 2.0 is not a viable solution, leaving HTML5 as the
clear winner in the standards war. If there is to be any standard at all,
HTML5 (and the related features in CSS and JS) is it.

 ✓ Standards-compliance is now a desirable feature. In the first browser
war, manufacturers were competing to add new features without any
regard to standards. Today, browsers are judged by their adherence to
accepted Web standards. Even Microsoft has gotten into the mix, claiming
that IE 9 supports a majority of the HTML5 features.

 ✓ HTML5 promotes good coding habits. The separation of content from
layout is a critical part of modern Web development. If you’re coming from
XHTML, you’re already comfortable with this situation. If you’re more
familiar with HTML 4, it’s a new idea, but one that has been inevitable.

Officially, HTML5 is not expected to be completely accepted as a standard until
2022. This seems like an eternity in Web time. However, parts of the standard
(such as the canvas tag) are universally available right now and are worth explor-
ing immediately. Others (like most of the form elements and the semantic markup
tags) provide suitable backups automatically if the browser doesn’t support the
advanced features. Others (like drag-and-drop) are simply not ready for use yet. A
few (like the local data support mechanism) are hotly debated, and it is not clear
which form of the technology will become part of the standard. As I discuss each
of these topics throughout the book, I try to give you a sense of whether it is
ready to be used yet, and which browsers support particular features.

Assessing your browser’s capabilities
HTML5 has a lot of different technologies going on, and different browsers have
adopted different parts of the standards. It can be very confusing to determine
which features can be used. There are a couple of good solutions to this problem.
A number of sites have charts that indicate which features are supported in which
browser. I like the ones at http://caniuse.com and http://en.wikipedia.
org/wiki/Comparison_of_layout_engines_%28HTML5%29. These tools can
help you see what is currently supported by the major browsers. It’s especially
handy for checking browsers you don’t have on your own machine.

03_9781118012529-ch01.indd 803_9781118012529-ch01.indd 8 3/21/11 8:52 AM3/21/11 8:52 AM

Looking At Browser Features 9

However, browser support for HTML5 features literally changes every day. New
versions of major browsers are appearing all the time, and it’s very hard to keep
track of what’s currently happening. For that reason, I’ve provided you with a
program you can use to check your current browser to see which HTML5 fea-
tures it supports. Figure 1-1 shows the detect.html program in action.

Figure 1-1

The detect.html page can be found at my Web site, www.aharrisbooks.net/
h5qr/detect.html. Use it with any browser to get real-time analysis of which
HTML5 features are available in your browser.

The program uses a script called Modernizr, which automates checking for vari-
ous browser features. You can get Modernizr for free from www.modernizr.com.

Checking for features in your code

You can also use the Modernizr script in your own code. Essentially, Modernizr
creates a Boolean (true/false) value for each of the HTML features. You can
check a variable to see if the current browser supports a particular feature. If it
does, you can implement the feature. If not, you will generally implement some
sort of fallback. Here’s how it’s done:

 1. Download the Modernizr script. The Modernizr script can be downloaded
free from www.modernizr.com. Install the script in the same directory as
your Web page. (If you move your page to a server, you’ll also need to
make a copy of the script available.)

03_9781118012529-ch01.indd 903_9781118012529-ch01.indd 9 3/21/11 8:52 AM3/21/11 8:52 AM

10 Part 1: Moving on to HTML5

 2. Include a reference to the script. Use the <script> tag to make a refer-
ence to the script in your header (before any other JavaScript code):

<script type = “text/javascript”
 src = “modernizr-1.6.min.js”></script>

 3. Add a special class to the HTML tag. The Modernizr script needs to have a
special tag available so it knows what to do. Add the “no-js” class to the
HTML tag:

<html lang = “en”
 class = “no-js”>

 4. Write a new JavaScript function. Add a new JavaScript function to do the
actual testing. Specific examples are shown in the code listing later in this
section.

 5. Use the appropriate Boolean property to check for a particular feature.
Each of the HTML5 features supported by Modernizr has a corresponding
variable. (You can look up the variables on the Modernizr site, or look at
my detect.html script, which uses them all.)

 6. Use the feature or an alternative. Normally, you’ll use Modernizr to check
for a feature. If that feature exists, you’ll use it. If not, you’ll implement
some other alternative.

As an example, the following page uses the Modernizr script to test whether the
current browser supports the HTML5 video tag. If so, it also checks for support
of the two main video codecs.

<!DOCTYPE HTML>
<html lang = “en”
 class = ”no-js”>
<head>
 <title>checkVideo.html</title>
 <meta charset = ”UTF-8” />
 <script type = ”text/javascript”
 src = ”modernizr-1.6.min.js”></script>
 <script type = ”text/javascript”>
 function init(){
 var output = document.getElementById(”output”);
 if (Modernizr.video){
 output.innerHTML =
 ”Your browser supports video
 ”;
 if (Modernizr.video.h264){
 output.innerHTML += ”H.264 codec supported
”;

03_9781118012529-ch01.indd 1003_9781118012529-ch01.indd 10 3/21/11 8:52 AM3/21/11 8:52 AM

Looking At Browser Features 11

 } // end if
 if (Modernizr.video.ogg){
 output.innerHTML +=
 ”Ogg Theora video codec supported
”;
 } // end if
 } else {
 output.innerHTML = ”Your browser does not support
the HTML5 video tag”; } // end if
 } // end init
 </script>
</head>

<body onload = ”init()”>
 <h1>Check for HTML5 Video</h1>
 <div id = ”output”>
 checking video...
 </div>
</body>
</html>

Figure 1-2 shows the video-checking script in action.

Figure 1-2

03_9781118012529-ch01.indd 1103_9781118012529-ch01.indd 11 3/21/11 8:52 AM3/21/11 8:52 AM

12 Part 1: Moving on to HTML5

 This example simply checks for the support for the video elements. A more
sophisticated example would actually embed the appropriate tags or code in the
page to display a video according to the browser’s capabilities.

For more information on the video tag, please check Part 3.

Picking a Suitable Browser
If you’re going to be writing HTML5 code, you’ll probably want to view your pages
in a browser that interprets HTML5 correctly. That’s not as easy as it sounds.
HTML5 isn’t really one specification, but a number of different standards. The var-
ious browsers have differing versions of support. It’s best to have a wide variety
of browsers to see which one works best for you. There are several browsers cur-
rently available, which all have varying levels of HTML5 support.

While there are a large number of browsers available, most are based on a
smaller set of tools called rendering engines. It’s the rendering engine that really
supports features or not. Here is a list of the primary engines, the browsers that
use them, and how well they support HTML5:

 ✓ Gecko (Firefox): The Gecko engine is the main engine of Firefox, Mozilla,
and a number of other related browsers. It has support for many, but not
all features. Gecko 2.0 is expected to include most features of HTML5, but
that version of the engine is not yet released (and will probably be the
foundation of Firefox 4). Although Firefox is a well-known and respected
browser in the Web development community, it does not (yet) have
extremely good support for HTML5.

 ✓ Trident (Internet Explorer): The various forms of Internet Explorer all
use the Trident engine. So far, this engine has the weakest support of
HTML5 features among all the major browsers. IE9 promises to have
much more complete support for HTML5, but even this version is pro-
jected to be missing some key features, including advanced form element
support and geolocation.

 ✓ WebKit: The WebKit engine was originally created by Apple based on code
from the open source KHTML project. Apple then released the code as
open source, where it became the foundation of a number of browsers.
The Safari browser on Macs, iPhones, and iPads all uses the WebKit
engine. WebKit is also the foundation of the Google Chrome browser, and
the browser on the Android mobile platform. WebKit has become the stan-
dard rendering engine for mobile platforms. If you want to see how your
pages will look on mobile platforms, you should check with a WebKit-
based browser like Chrome or Safari. WebKit has the widest support for
HTML5 elements, although it still doesn’t support everything. Most of the

03_9781118012529-ch01.indd 1203_9781118012529-ch01.indd 12 3/21/11 8:52 AM3/21/11 8:52 AM

Looking At Browser Features — Using Chrome Frame to Add Support to IE 13

code in this book was tested in Google Chrome 6, which supports the cur-
rent WebKit rendering engine.

 ✓ Presto: The Presto engine is the engine underlying the Opera family of
browsers. Opera has long been considered a technically superior browser,
but it has never gotten the market share it should. A number of gaming and
portable browsers are based on Presto, including the Wii Internet Channel,
the Nintendo DS Browser, and Opera Mobile, available on numerous cell-
phones and portable devices.

 Browser specifications are likely to change. It’s likely that new features have
been added by the time you read this book. You should always test your page in
as many browsers as you can, so you won’t be surprised. You might also check
http://en.wikipedia.org/wiki/Comparison_of_layout_engines_
(HTML5). This Wikipedia site tends to have the latest information on what fea-
tures of HTML are supported by which browser.

Using Chrome Frame to Add Support to IE
It might be depressing to note that the browser with the largest market share
has the least support for HTML5 standards. However, there is an answer. Google
Chrome Frame is a special tool that embeds the Chrome rendering engine inside
IE. To use it, put the following code in your page:

<!DOCTYPE html>
<html lang=”en”>
<head>
 <title>ChromeFrame.html</title>
 <meta charset=”UTF-8”>
 <script type=”text/javascript”
 src=”http://ajax.googleapis.com/ajax/libs/chrome-
frame/1/CFInstall.min.js”></script>
</head>

<body onload = ”CFInstall.check()”>
</body>

</html>

The rest of your code can be written assuming the user has Chrome (which has
excellent support for HTML5). This is the best way to use HTML5 in IE until
Microsoft decides to add meaningful support to HTML5.

03_9781118012529-ch01.indd 1303_9781118012529-ch01.indd 13 3/21/11 8:52 AM3/21/11 8:52 AM

14 Part 1: Moving on to HTML5

03_9781118012529-ch01.indd 1403_9781118012529-ch01.indd 14 3/21/11 8:52 AM3/21/11 8:52 AM

HTML Foundations
HTML5 is the latest of a series of HTML versions. To get the most out of HTML5,
you need to know how it fits in with the other versions of HTML that came
before it.

Most of this chapter is a review of standard HTML ideas. If you’ve never written
any HTML by hand before, you’ll want to look it over carefully. If you’re already
a code ace, you can probably just skim over it.

The content of this chapter forms a baseline. The code described here works in
all modern browsers. As much of the HTML5 content is still browser-dependent,
begin with a standard set of tags and elements that work on every browser. This
chapter describes this lowest-common-denominator HTML syntax, which is
expanded upon throughout the book.

 This chapter is really an overview. If you’re totally new to HTML, you might con-
sider looking over one of my other books — HTML, XHTML, and CSS All–in-One
For Dummies, 2nd edition (Wiley). It goes into great detail on HTML, CSS, and
lots of other good stuff. That book is a standard reference for today’s Web. The
book you’re holding now is really more about where the Web is going in the near
future.

 Be sure to check out my Web site for working examples of every code fragment
in the book: www.aharrisbooks.net/h5qr.

In this part . . .

✓ Reviewing HTML

✓ Comparing HTML5 to XHTML and HTML 4

✓ Building the Basic Page

✓ Adding Images and Links

✓ Formatting Data with Lists and Tables

✓ Validating Your Code

✓ Building Forms

Part 2

04_9781118012529-ch02.indd 1504_9781118012529-ch02.indd 15 3/21/11 9:37 AM3/21/11 9:37 AM

16 Part 2: HTML Foundations

Exploring HTML and XHTML
HTML has been around for a while now, and it has been continuously changing.
Ideas that were once cutting edge (like using frames) are now considered out of
date. HTML began as a very simple language, which became more complex as it
was used more. HTML5 tries to make HTML simple again. The following ideas
have driven the development of HTML5.

 ✓ Make the code as clean as possible. Things will get complicated fast.
HTML code should be clean and easy to read. It shouldn’t have any unnec-
essary features, and it should be formatted in a way that is easy to follow.

 ✓ Separate structure from design. Try to keep your HTML code focused on
the structure of the code (what it means) rather than the display (how it
looks). This keeps the HTML code relatively clean and easy to work with.

 ✓ Use HTML for structure. Avoid tags like and <center> in your
HTML code, as they are difficult to change with JavaScript, clutter up your
code, and are not allowed in some forms of HTML. Use HTML code to
determine the meaning and structure of the page.

 ✓ Use CSS for design. You can keep the HTML a lot easier to work with if you
leave the design work (colors, fonts, positions, and so on) to CSS. If you
use CSS for design, your JavaScript will have a lot more ability to change
how the page works because you can also modify CSS through JavaScript.

 ✓ Avoid use of tables and frames for layout. These techniques were the
best tools Web designers had at one point, and so they were frequently
used to provide visual structure to Web pages. However, modern CSS
approaches provide for much cleaner code that’s easier to work with even
when things get more advanced.

 ✓ Start with valid code. A lot of times, a page will look perfectly fine, but
there will be some mistake hidden away that will rear its ugly head at the
worst possible time (usually when you’re trying to show something to a
client). It’s best to start your projects with HTML that you know is valid.
See “Validating Your Pages,” later in this part, for more on ensuring the
HTML foundation is in tip-top shape.

Appreciating HTML

HTML 4 was the dominant form of HTML for a long time. It was popular for some
very good reasons:

 ✓ Universal support: By the time HTML 4 came out, there was really only
one dominant browser — Internet Explorer 6 (IE6). Since the vast majority
of users had some form of this browser, any code that would work for this
browser was considered standard. In fact, the standards we call HTML 4
are really the parts of HTML 4 that were supported by IE6.

04_9781118012529-ch02.indd 1604_9781118012529-ch02.indd 16 3/21/11 8:52 AM3/21/11 8:52 AM

Exploring HTML and XHTML 17

 ✓ Reasonable control: HTML 4 enhanced older versions of HTML with some
nice features like font support, the ability to change colors, and some sup-
port for multimedia. Frames added a certain amount of layout support,
although they brought their own problems.

 ✓ Ease of use: The HTML 4 standard itself was pretty easy to learn. It wasn’t
too much trouble until you tried to do advanced stuff like table-based lay-
outs. Then the simplicity of the language began to hurt because it just
couldn’t do some things.

 ✓ Forgiving: HTML was designed to be very easygoing. If you did something
wrong, the browser would simply guess what you were trying to say.
Often, the guesses were correct.

Emergence of XHTML

HTML 4 was popular for a long time, but it wasn’t perfect. As Web development
moved from a hobby enterprise to become the foundation of serious applica-
tions, the weaknesses of HTML 4 became more apparent. While HTML 4 never
died away, a new standard called XHTML (eXtensible HyperText Markup
Language) emerged among elite Web developers. XHTML was intended as a
more serious answer to HTML 4. While HTML 4 was easy to get along with, it
was considered sloppy by professional programmers. XHTML (especially the
strict version) was much more precise and predictable, making it popular
among higher-end developers. Here are the key features of XHTML Strict:

 ✓ More demanding syntax: XHTML is case-sensitive, it requires all attributes
to be encased in quotes, and it has very strict rules for how tags are nested.
Every tag must have an explicit closing tag. (Even one-off tags like
require a special closing character.) This more precise syntax made XHTML
a little more exacting to program than HTML 4, but the results were far more
predictable.

 ✓ Validation support: The main advantage of all the strictness in XHTML was
support for validation. The HTML 4 standard was so loosey-goosey that
nobody could tell if a page was formatted incorrectly. With XHTML, it
became possible to run a special validation program that could find struc-
tural errors in your code.

 ✓ Separation of content and layout: HTML was originally intended only to
describe the content of a document. By the time HTML 4 came out, it
added numerous tags for handling the visual aspects of a document. The
 and <center> tags were prime examples of this. While these tags
did their jobs, they did not provide enough control, and moved away from
the central idea of HTML. XHTML strict removed all layout tags.

 ✓ Rising importance of CSS: Cascading Style Sheets (CSS) were available in
HTML 4, but they were not always used properly because HTML provided

04_9781118012529-ch02.indd 1704_9781118012529-ch02.indd 17 3/21/11 8:52 AM3/21/11 8:52 AM

18 Part 2: HTML Foundations

some alternatives. When XHTML eliminated layout tags, CSS moved from
an optional enhancement to a central part of Web development.

 ✓ XML syntax: Early promoters of XHTML emphasized that XHTML followed
the syntax of the XML standard. While this is true, it never turned out to
be quite as important as people thought it might. The XML syntax made it
easier for automated programs to manipulate Web pages as data, but that’s
not a feature that most Web developers are terribly concerned about.

It’s alive, and it’s HTML5!

XHTML Strict was a really great idea, but it never really caught on. Professional
developers (especially those who were integrating programming languages like
JavaScript and PHP into their web projects) loved XHTML Strict. Top designers
enjoyed the newfound freedom of CSS. However, XHTML was a little too unfor-
giving for most developers, and the vast majority of pages never bothered to
validate to the new standards. When the time came to devise a new standard,
the W3C finally decided to support HTML5 rather than XHTML 2.

HTML5 is not really a rejection of XHTML. It has some of the best features of
both HTML 4 and XHTML:

 ✓ Simple doctype: The doctype definition (the boilerplate code that begins
every Web page) for XHTML was really complicated. Even people who
taught classes and wrote books about it (like, um, me) never memorized
the doctype, but had to copy and paste it every time. HTML5 has a very
simple and clean document definition, and it’s once again possible to write
a page with a text editor from memory.

 ✓ Separation of content and style: HTML5 does not include the style tags
from HTML 4 (font, center, and so on), requiring developers to use CSS for
all styling. Likewise, frames and table-based layout are discouraged in
favor of CSS-style layout.

 ✓ Validation support: Validation turned out to be a very useful tool, so HTML5
can be validated just like XHTML. The W3C validator (http://validator.
w3.org; see “Validating Your Pages” later in this part) supports HTML5
now, and other validation tools are coming online. Validation is an easy way
to eliminate goofy coding mistakes, and can greatly simplify your coding
once you start adding programming support to your documents.

 ✓ Strict tradition: The coding standards of HTML5 are more like XHTML than
HTML 4. While it’s still possible to use sloppy coding in HTML5, most
developers use the XHTML strict standards to make the code easier to
read and more predictable.

 All the code in this book adheres to the stricter style standards of XHTML.

04_9781118012529-ch02.indd 1804_9781118012529-ch02.indd 18 3/21/11 8:52 AM3/21/11 8:52 AM

Exploring HTML and XHTML 19

 ✓ Tighter integration of CSS and programming languages: Perhaps the
most important feature of HTML5 is its humility. While HTML is still the
central language of the Internet, HTML5 is really about distributing con-
trol to other languages. HTML5 is designed as a central glue that ties
together many other technologies: CSS for visual layout, JavaScript for
client-side programming, server-side languages like PHP for server con-
trol, and databases.

 ✓ New capabilities: Of course, HTML5 presents new capabilities, which
are the primary focus of this book. Many of the new features are not
technically HTML but advances in the various other related technologies
(integrated databases, new JavaScript syntax, new CSS features, and
so on).

Setting up a basic HTML page

The basic HTML5 page is quite easy to build. Just open up any text editor and
add the following code:

<!DOCTYPE HTML>
<html lang = “en”>
<head>
 <!-- basic.html -->
 <title>basic.html</title>
 <meta charset = ”UTF-8” />
</head>

<body>
 <h1>Level One Headline</h1>

 <p>
 This is a paragraph.
 Note that the text is automatically wrapped.
 </p>

</body>
</html>

This page, shown in Figure 2-1, is not difficult to create:

 I tend to bump up the font sizes in these screenshots when I can — doing so
makes the page a bit easier to read. Be sure to look at the actual page on the
Web site (www.aharrisbooks.net) to see exactly how it works.

04_9781118012529-ch02.indd 1904_9781118012529-ch02.indd 19 3/21/11 8:52 AM3/21/11 8:52 AM

20 Part 2: HTML Foundations

Figure 2-1

To build a basic HTML5 page, follow these steps:

 1. Begin with the doctype. Modern versions of HTML (XHTML and HTML5)
have a special attribute called the doctype, which indicates which form
of HTML is being used. The doctype for XHTML was extremely confusing,
and HTML 4 didn’t have a doctype at all. Set the doctype to HTML5 with
this tag: <!DOCTYPE HTML>. The doctype definition should be on the first
line of your Web site. If you leave this out, you will still probably be able
to use HTML5 features, but validators will have to guess about which form
of HTML you’re using. (Consult any science fiction movie to see what hap-
pens when computers make guesses about things.)

 2. Add the <html> tag. This special tag indicates the beginning of a Web
page. It’s best to indicate which language the page is written in. Specify
lang = “en” for English. Be sure to have a corresponding </html> tag
at the bottom of the page. This indicates the end of the page you began
with the <html> tag at the beginning of the page.

 3. Create a <head> area. The head is something like the engine compart-
ment of a car. People don’t usually go there, but there’s lots of important
machinery. The head is empty in this simple example, but it will fill up
with JavaScript and CSS goodness soon enough.

04_9781118012529-ch02.indd 2004_9781118012529-ch02.indd 20 3/21/11 8:52 AM3/21/11 8:52 AM

Exploring HTML and XHTML 21

 4. Specify the character set. While this isn’t strictly necessary, it’s considered
good form to let the browser know what kind of characters to use when dis-
playing your page. Pages written in English should generally use UTF-8, so
indicate this with the following code: <meta charset = “UTF-8” />.

 5. Indent your code. Browsers don’t care if your code is indented, but it’s a
very good habit to get into. Generally, I indent every time I open a new ele-
ment that isn’t closed on the same line. Then it’s easy for me to line up my
beginning and ending tags to ensure the page is well formed and I didn’t
miss any ending tags.

 6. Add a comment. Comments aren’t strictly required, but they’re very good
form. HTML comments begin with <!-- and end with -->. Typically the
comments in this book will be a brief summary of the purpose of the page.
Comments can last over several lines.

 7. Put in a title with <title></title>. This tag allows you to specify a title
for your page. The title typically appears in the Web browser’s title bar, and
will also often appear in search engine results for your page. In this book, I
generally put the filename in the title, so you can easily match the programs
on the book’s companion Web site with those in the book code listings.

 8. Include the bulk of the page in the <body> tags. If the head area is the
engine compartment, the body is the passenger space. Most of the text
that’s visible on the Web site is part of the body. The </body> tag is usu-
ally right before the </html> tag, as you’ll typically finish off the body
and then close off the HTML.

 9. Use heading tags to describe your outline. The <h1> tag is an example of a
heading. The heading tags all begin with h followed by a number indicat-
ing the strength of the heading. All your main topics should be denoted by
level-one headings. Subtopics should be level-two headings (<h2>). The
heading levels go all the way to h6, but it’s unusual to use anything
smaller than level 3.

 10. Place most of the text into paragraphs. Although HTML doesn’t require
use of paragraph tags, they’re still a very good idea. Place every para-
graph inside a <p></p> pair. This will make it much easier to manage the
look and behavior of your text later.

 11. Save your file with the .html extension. Be sure to save the file with a .html
extension. You can then load the file into a browser to see how it looks.

 Some of these elements (especially the headings) will tend to have a particular
visual style. The default styles are just there as guidelines. Avoid the temptation
to pick headings based on their appearance. When you use CSS in Part 5, you’ll
be able to make any heading look however you want.

04_9781118012529-ch02.indd 2104_9781118012529-ch02.indd 21 3/21/11 8:52 AM3/21/11 8:52 AM

22 Part 2: HTML Foundations

Fleshing Out Your Page
If you’ve used HTML 4 or XHTML, you’ll find HTML5 very familiar. Most of your
text will go into paragraphs, marked with the <p></p> pair. Larger sections may
be enclosed in divisions, using the <div></div> pair. You’ll then add various
other elements: images, links, lists, tables, and forms. HTML5 adds a few new
elements, but for now, stick with the base that works in every browser.

Adding images
Web pages are capable of far more than text. Figure 2-2 shows a page with an
embedded image.

Figure 2-2

Images are pretty easy to add to Web pages. Here’s the code for adding the image:

<!DOCTYPE HTML>
<html lang = “en”>
<head>
 <title>imageDemo.html</title>
 <meta charset = ”UTF-8” />
</head>

<body>

04_9781118012529-ch02.indd 2204_9781118012529-ch02.indd 22 3/21/11 8:52 AM3/21/11 8:52 AM

Fleshing Out Your Page 23

 <h1>Image Demo</h1>

 <p>
 <img src = “monkey.png“
 alt = “Picture of a happy monkey“ />
 </p>
 <h2>This page has a picture of a monkey</h2>

 <p>
 This monkey is called ‘Suzanne.‘ It‘s a default
 object in an incredible free 3D modeling tool
 called ‘Blender.‘
 </p>

</body>
</html>

Adding an image is relatively easy. Here’s what you do:

 1. Identify the image you want to use. Of course, you have to have access to
an image before you can use it. Be sure you have permission to use the
image in your site.

 2. Modify the image if necessary. You may need to adjust the image for use on
the page. It’s best to resize your images before you use them on the Web. You
can use commercial image-manipulation software, but I prefer IrfanView or
Gimp for this kind of work. Links to both of these free programs are available
on my Web site (www.aharrisbooks.net/h5qr/resources.html).

 3. Choose your image type. Web browsers can display .jpg, .gif, and
.png images. If your image is in another format, use a tool like IrfanView
or Gimp to change it to one of these Web-friendly formats.

 4. Put your image in the right place. The image file should be in the same
directory as the HTML file. That way, when you post your page to the
server, it will be easy to move the image as well.

 5. Build your page as normal. The image will be placed with a tag embedded
into the body.

 6. Use the tag to indicate the image. This tag needs to be embedded
inside a paragraph or div if you want the page to validate correctly.

 7. Use the src attribute to indicate the file containing the image. If the image
file is in the same directory as the Web page, all you need is the name of the
image. If the image file is elsewhere on the Internet, you can use a complete
URL like http://www.aharrisbooks.net/jad/jad_2/monkey.png.

04_9781118012529-ch02.indd 2304_9781118012529-ch02.indd 23 3/21/11 8:52 AM3/21/11 8:52 AM

24 Part 2: HTML Foundations

 8. Include the alt attribute describing the image. The alt attribute con-
tains text describing the image. This is important for those who cannot
see your image — users with visual impairments, people who have turned
off images to increase browsing speed, and search engine bots, which
can’t see the images but read alt tags.

 9. End the image tag with a /. The img tag is a special tag that doesn’t
require (or allow) an end tag. The slash character at the end of the tag
indicates that the tag is a one-shot tag that serves as its own ending tag.

Including links

The H in HTML stands for hypertext, which is a fancy term for links. Links are one of
the things that make the Internet so cool and powerful. It’s very easy to add a link to
a Web page. Figure 2-3 shows an example with two different kinds of links in it.

Figure 2-3

The code for building the links is reproduced here:

<!DOCTYPE HTML>
<html lang = “en”>
<head>
 <title>linkDemo.html</title>
 <meta charset = ”UTF-8” />
</head>

04_9781118012529-ch02.indd 2404_9781118012529-ch02.indd 24 3/21/11 8:52 AM3/21/11 8:52 AM

Fleshing Out Your Page 25

 <body>
 <h1>Link Demo</h1>
 <h2>Relative reference to an image</h2>
 <p>
 This paragraph has a link to a
 monkey picture.
 </p>

 <h2>Absolute reference to a web page</h2>
 <p>
 This paragraph contains a link to

 Andy’s main site.

 </p>

 </body>
</html>

Links are more than they appear. They display text on the page, but when the
user clicks the text, the browser loads a different page on the Internet. Building
links into your pages is quite straightforward.

 1. Begin with an ordinary page. Links are usually embedded directly into
your page. Links cannot stand on their own, but are usually part of some
other block-level element like a paragraph.

 2. Use the <a> tag to indicate a link. The a stands for anchor. (I know; it
should be the link tag, but that term is used for something else in HTML.)

 3. Utilize the href attribute to describe where the link will go. Most links
have an href (hypertext reference) attribute, which describes what page
should load when the user clicks the link. The href can be a relative or
absolute address.

 • Relative: The href can be a simple filename. If you are linking to a file
in the same directory as the Web page you’re writing, you can simply
indicate the filename. This is known as a relative reference because the
browser assumes the linked file is in the current directory of the cur-
rent server. The first link of my example points to the monkey image in
the same directory as the page itself.

 • Absolute: The href can also be a complete Web address. If you prefer,
you can give the entire address of a Web site. This is known as an abso-
lute reference because it explains how to find the file regardless of the
location of the current page. If you want to point to pages or files on
somebody else’s server, you must use absolute references.

04_9781118012529-ch02.indd 2504_9781118012529-ch02.indd 25 3/21/11 8:52 AM3/21/11 8:52 AM

26 Part 2: HTML Foundations

 4. Place the visible text between the <a> and tags. Any text that appears
between the <a> and the tags will be displayed on the screen in a
format that indicates a link. The default format is blue underlined text. You
find out how to change that (and many other display tricks) in Part 5.

The file you link to can be a Web page or anything else the browser can read.
The first link on linkDemo.html points to an image file, and the second points
to a Web page. Most links point to Web sites, but you can also link anything the
browser can read, including images.

Making lists and tables

Pages are often about data, and data is often organized into lists. Figure 2-4 illus-
trates a page with a series of lists on it.

Figure 2-4

The page in Figure 2-4 shows two main types of lists and a combination list that
nests one type into another. Here’s the code used to create the lists:

<!DOCTYPE HTML>
<html lang = “en”>
<head>
 <title>listDemo.html</title>
 <meta charset = “UTF-8” />
</head>

04_9781118012529-ch02.indd 2604_9781118012529-ch02.indd 26 3/21/11 8:52 AM3/21/11 8:52 AM

Fleshing Out Your Page 27

<body>
 <h2>Languages</h2>

 English
 Spanish
 Japanese

 <h2>Counting in English</h2>

 one
 two
 three

 <h2>Counting in Other Languages</h2>

 Spanish

 uno
 dos
 tres

 Japanese

 ichi
 ni
 san

</body>
</html>

Lists, like most HTML elements, are quite easy to build.

 1. Designate the beginning of the list with or . The tag indi-
cates an unordered (bullet) list, and the tag is used to describe an
ordered (numbered) list. When you use CSS (described in Part 5) to style
your lists, you can have many different kinds of marking, including num-
bers, Roman numerals, bullets, or custom graphics.

 2. Mark each item with an pair. The tag is used to indicate
a list item. All elements of a list should be enclosed in the tag.

04_9781118012529-ch02.indd 2704_9781118012529-ch02.indd 27 3/21/11 8:52 AM3/21/11 8:52 AM

28 Part 2: HTML Foundations

 3. (Optional) Nest lists inside each other. The of one list can contain
an entire new list. This is the technique used to build the nested lists in
the example. Just be sure to close off one list before beginning a new one.
Proper indentation helps you keep track of how deeply you’re nested.

Utilizing tables

Sometimes you will encounter data that is best presented in a tabular format.
HTML has a full-featured table system for exactly this purpose. For example,
consider the table displayed in Figure 2-5.

Figure 2-5

The basic structure of a table in HTML format is reasonably easy to understand.
Here’s the code that created basicTable.html:

<!DOCTYPE HTML>
<html lang = “en”>
 <head>
 <title>basicTable.html</title>
 <meta charset = “UTF-8” />
 <style type = “text/css”>
 table, td, th {
 border: 1px solid black;

04_9781118012529-ch02.indd 2804_9781118012529-ch02.indd 28 3/21/11 8:52 AM3/21/11 8:52 AM

Fleshing Out Your Page 29

 }
 </style>

 </head>

 <body>
 <h1>A Basic Table</h1>
 <h2>HTML Superheroes</h2>
 <table>
 <tr>
 <th>Hero</th>
 <th>Power</th>
 <th>Nemesis</th>
 </tr>

 <tr>
 <td>The XMLator</td>
 <td>Standards compliance</td>
 <td>Sloppy Code Boy</td>
 </tr>

 <tr>
 <td>Captain CSS</td>
 <td>Superlayout</td>
 <td>Lord Deprecated</td>
 </tr>

 <tr>
 <td>Browser Woman</td>
 <td>Megacompatibility</td>
 <td>Ugly Code Monster</td>
 </tr>

 </table>
 </body>
</html>

When you examine this code, you can see that a table is simply a set of carefully
nested tags. The process for building a table is not difficult, but it does require
some forethought.

 1. Plan your table first. It’s much easier to build a table in HTML if you already
know how it will be structured. You should know how many columns you
will have, and which rows or columns will be headlines. It’s a good idea to
sketch out your table on paper if you’re not sure of these things.

04_9781118012529-ch02.indd 2904_9781118012529-ch02.indd 29 3/21/11 8:52 AM3/21/11 8:52 AM

30 Part 2: HTML Foundations

 2. Begin the table with the <table> tag. The <table></table> pair
encloses the entire table.

 3. Create a table row with <tr>. The table is defined with a series of rows.
Use the <tr></tr> pair to enclose each row of data.

 4. Signify headings with <th>. Some cells will contain headings, and some
will contain actual data. Often, the top row will contain headings (some-
times the left-most column will, too). Use the <th></th> pair to signify
text that should be treated as a heading cell. By default, such cells are
generally bolder and centered, but that can be changed with CSS.

 5. Specify ordinary data cells with <td>. The <td></td> pair is used to spec-
ify an ordinary data cell. Most of the cells in your table will be specified by
td tags.

 6. Keep the number of cells consistent. Each row should have the same
number of cells. (Although there are techniques that allow you to extend
a cell across multiple rows or columns, I stick to basic techniques in this
introductory part.)

 7. Add CSS as needed. Tables do have a basic format, but as usual, you can
change things with CSS. I added borders to this example, so it’s easier to
see the table in Figure 2-5.

 8. Do not use tables for layout. The early versions of HTML did not have ade-
quate support for layout (creating columns and precise page layout).
Clever HTML developers came up with all sorts of hacks using tables to
simulate a layout system. CSS (covered in Parts 5 and 6) provides all the
page layout techniques you need, so use of tables should be restricted to
its original purpose: presenting tabular data.

Making a Form
From the beginning, Web pages have had the ability to gather data from users.
HTML has a standard but quite useful set of form elements that you can use to
get input. You can’t do anything with the data in plain HTML, but that’s what
JavaScript and PHP are for. You’ll write a number of programs to extract data
from Web forms, so it’s a good idea to know how they work. Figure 2-6 shows a
form containing all the main HTML form elements you might encounter.

04_9781118012529-ch02.indd 3004_9781118012529-ch02.indd 30 3/21/11 8:52 AM3/21/11 8:52 AM

Fleshing Out Your Page — Making a Form 31

Figure 2-6

The page in Figure 2-6 has a lot of code on it compared to the earlier examples in
this part. I show you the entire code here so you can see how it fits together,
and then I explain how the various parts work.

<!DOCTYPE HTML>
<html lang = “en”>
 <head>
 <title>formDemo.html</title>
 <meta charset = ”UTF-8” />
 </head>

 <body>
 <h1>Form Demo</h1>
 <form>
 <fieldset>
 <legend>Text input</legend>
 <p>
 <label>Text box</label>
 <input type = “text“
 id = “myText“
 value = “text here“ />
 </p>
 <p>
 <label>Password</label>

04_9781118012529-ch02.indd 3104_9781118012529-ch02.indd 31 3/21/11 8:52 AM3/21/11 8:52 AM

32 Part 2: HTML Foundations

 <input type = “password“
 id = “myPwd“
 value = “secret“ />
 </p>

 <p>
 <label>Text Area</label>
 <textarea id = “myTextArea“
 rows = “3“
 cols = “80“>Your text here</textarea>
 </p>
 </fieldset>

 <fieldset>
 <legend>Selecting elements</legend>
 <p>
 <label>Select List</label>

 <select id = “myList“>
 <option value = “1“>one</option>
 <option value = “2“>two</option>
 <option value = “3“>three</option>
 <option value = “4“>four</option>
 </select>
 </p>

 <p>
 <label>Check boxes</label>
 <input type = “checkbox“
 id = “chkEggs“
 value = “greenEggs“ />
 <label for = “chkEggs“>Green Eggs</label>

 <input type = “checkbox“
 id = “chkHam“
 value = “ham” />
 <label for = “chkHam”>Ham</label>
 </p>
 <p>
 <label>Radio buttons</label>
 <input type = ”radio”
 name = ”radSize”
 id = ”sizeSmall”
 value = ”small”
 checked = ”checked” />

04_9781118012529-ch02.indd 3204_9781118012529-ch02.indd 32 3/21/11 8:52 AM3/21/11 8:52 AM

Making a Form 33

 <label for = ”sizeSmall”>small</label>

 <input type = ”radio”
 name = ”radSize”
 id = ”sizeMed”
 value = ”medium” />
 <label for = ”sizeMed”>medium</label>

 <input type = ”radio”
 name = ”radSize”
 id = ”sizeLarge”
 value = ”large” />
 <label for = ”sizeLarge”>large</label>
 </p>
 </fieldset>

 <fieldset>
 <legend>Buttons</legend>
 <p>
 <button type = ”button”>
 standard button
 </button>

 <input type = ”button”
 value = ”input button” />
 <input type = ”reset” />
 <input type = ”submit” />
 </p>
 </fieldset>
 </form>
 </body>
</html>

As you can see, form elements follow many of the same rules as the tags you’ve
already seen, but there are some differences.

 The form elements shown in this example are available in all current versions of
HTML. See Part 4 for information on new form elements available in HTML5.

Form structure tags

These tags are used to help manage the general structure of the form:

 ✓ <form>: The <form> tag is the actual tag containing the form. All the form
elements are enclosed inside this tag. The <form> tag should also include
the action = “” attribute. This indicates that you do not plan to call a
server-side script when the form is submitted.

04_9781118012529-ch02.indd 3304_9781118012529-ch02.indd 33 3/21/11 8:52 AM3/21/11 8:52 AM

34 Part 2: HTML Foundations

 ✓ <fieldset>: This is a special tag that allows you to group a series of
input elements together. It is not required, but it can make complex forms
easier to navigate. By default, a fieldset has a single border around it, but
you can change this with CSS.

 ✓ <legend>: A legend can be added to a fieldset. It acts as a label for the
entire fieldset.

 ✓ <label>: The <label> tag marks text as the label associated with a par-
ticular input element. You can use the optional for attribute to specify
which input element the label is associated with. Label tags are normally
used to make CSS styling of forms easier to manage.

 The fieldset, legend, and label tags are not required, and frankly, they
weren’t used much in earlier forms of HTML. These tags are used more com-
monly in XHTML and HTML5, where use of tables to organize the physical layout
of the page is discouraged. These tags help you organize the page so it’s easier
to lay out with CSS. Proper use of these tags and CSS often makes your forms
much easier to work with than the older table-based hacks.

Constructing text input

Many of the form elements are based on the input tag. This workhorse is a general-
purpose tag used to make a number of interesting input objects. The type attri-
bute is used to determine what type of element the tag creates on the page. By far,
the most common input element is the basic text box. Its code looks like this:

 <input type = “text”
 id = “myText”
 value = “text here” />

Building it is straightforward.

 1. Create an input element. The <input> tag creates the general structure
of the element.

 2. Set the type to “text”. This indicates you are building a standard text ele-
ment, not something more elaborate.

 3. Add an id attribute. The id attribute allows you to name the element.
This will be very important when you add JavaScript to the page because
your JavaScript code will use the ID to extract data from the form.

 4. Add default data. You can add default data if you want, using the value
attribute. Any text you place in the value will become the default value of
the form.

The text element will place a small box on the screen. When the user selects the
box, the cursor will change to an I-beam, and the user will be able to type text
into the box.

04_9781118012529-ch02.indd 3404_9781118012529-ch02.indd 34 3/21/11 8:52 AM3/21/11 8:52 AM

Making a Form 35

Of course, if you want to do something with this text, you’ll need to write some
code. See Bonus Part 1 for information on using JavaScript to read data from
forms.

Creating password fields

The standard input element has a cousin that is sometimes used — password.
The code for the password looks a lot like the code for a standard input
element.

 <input type = “password”
 id = “myPwd”
 value = “secret” />

The password field looks very similar to the ordinary text field, but it does have
one primary difference. When the user types data into the text field, the actual
contents of the field are replaced by asterisks. This prevents evil henchmen
from looking over your shoulders to discover your password.

 The password field doesn’t provide any real security to speak of. When it is used
to send a request to a Web server, that request is normally sent in the clear,
where those evil henchmen are sure to find it. In JavaScript processing, the situ-
ation is even worse because the code used to retrieve the data will be freely
available to the browser. JavaScript is not the language to use if you want to
keep a lot of secrets.

Erecting a multiline text box

Sometimes you’ll need the ability to enter several lines of text. The text area ele-
ment is perfect for this situation. Its syntax is a bit different from the input ele-
ment you’ve seen so far:

 <textarea id = “myTextArea”
 rows = “3”
 cols = “80”>Your text here</textarea>

To make your own text area:

 1. Begin with the <textarea> tag. This tag indicates the beginning of a mul-
tiline text box.

 2. Specify the number of rows. Indicate the number of rows (or lines) of text
you want the text area to contain. Larger boxes accommodate more text
but require more room on the screen.

 3. Indicate the number of columns. The number of columns shows how wide
(in characters) the text box should be. 80 characters is typical for a page-
width form.

04_9781118012529-ch02.indd 3504_9781118012529-ch02.indd 35 3/21/11 8:52 AM3/21/11 8:52 AM

36 Part 2: HTML Foundations

Forming drop-down lists

Drop-down lists are a common feature in Web pages. They are nice because they
allow the programmer to specify a number of choices. The user can choose a
selection without typing. Drop-down lists are especially nice because they don’t
require a lot of screen real estate — the options are visible only while the user is
selecting them.

Drop-down lists have one more incredibly important attribute; they prevent cer-
tain kinds of errors. The limited options make the response very predictable.
When you allow the user to type information into a form, it can be very difficult to
check for all the crazy things the user might enter. With a list box, you’ve already
predetermined all the possible answers. There’s a lot less that can go wrong.

In HTML/XHTML, drop-down lists are created by two types of object. The over-
all structure uses the <select> tags, while each of the possible choices has its
own <option> tag. Here’s how it works:

 <select id = “myList”>
 <option value = “1”>one</option>
 <option value = “2”>two</option>
 <option value = “3”>three</option>
 <option value = “4”>four</option>
 </select>

The select list is a real powerhouse, so you should know how to make it:

 1. Create the <select> element first. The container for the list will be a
<select> element. The entire list is encased in the <select></select>
pair.

 2. Give the select element an ID. You’ll use this ID to refer to the element
in code.

 3. Add an option element to the select element. I normally indent the
options to remind myself they are part of the select object.

 4. Give each option a value. The value will be the response sent to a program
when the user chooses an option. The user will not necessarily see the value.

 5. Indicate the text the user will see. The text that the user will see for the
option goes between the <option> and </option> tags. This can be dif-
ferent from the value, or the same. (That will make more sense after you
do some JavaScript coding.)

 6. Add as many options as you want. Create a new option object for each
choice you want to have available in the list.

 Select boxes don’t have to have the drop-down behavior. If you want the box to
take up more vertical space on the page, just specify the number of rows with
the size attribute.

04_9781118012529-ch02.indd 3604_9781118012529-ch02.indd 36 3/21/11 8:52 AM3/21/11 8:52 AM

Making a Form 37

Making checkboxes

Sometimes you’ll have some kind of information that can be true or false. The
checkbox element is perfect for this kind of input because the user can click to
select or deselect the option. Checkboxes are another variant of the versatile
input tag:

 <p>
 <label>Check boxes</label>
 <input type = “checkbox”
 id = “chkEggs”
 value = “greenEggs” />
 <label for = “chkEggs”>Green Eggs</label>

 <input type = “checkbox”
 id = “chkHam”
 value = “ham” />
 <label for = “chkHam”>Ham</label>
 </p>

When you build a checkbox, you’ll typically also attach a label to the text box.
This way, the user can click the checkbox or the associated label to make a
selection. Checkboxes often appear in groups, but they are independent of each
other. Here’s how to build a checkbox:

 1. Begin with an input element. Checkboxes are just another form of the
input element.

 2. Set the type attribute to checkbox. This clarifies that the input element
will be a checkbox. A small checkable box will be placed on the screen.

 3. Give the element an id. Like all form elements, you’ll need an id field so
that your code can work directly with the element.

 4. Specify a value. You can attach a value to a checkbox. The user won’t see
the value (unless you choose to make the label look just like the value).

 5. Add a label. Checkboxes really need to have a label associated with them
so that the user will understand what the checkbox is about. The label of
a checkbox is usually applied to the right of the checkbox.

 6. Add the for attribute to the label. The label has a special attribute called
for, which allows you to specify which input element the label corre-
sponds to. Place the id value of the checkbox into this attribute of the
label. This is especially useful for checkboxes because in most browsers
the user can click either the label or the checkbox to trigger the selection.
Associating the label to the checkbox gives the user a larger target to click
on, and makes the form easier to use.

04_9781118012529-ch02.indd 3704_9781118012529-ch02.indd 37 3/21/11 8:52 AM3/21/11 8:52 AM

38 Part 2: HTML Foundations

 HTML forms don’t do anything on their own. You’ll need to add some sort of
programming in JavaScript or HTML to make the form do something.

Popping in radio buttons

On the surface, radio buttons seem a lot like checkboxes, but they are different
in a number of important ways.

 ✓ Radio buttons occur only in groups. You can have one checkbox on a
form, but radio buttons make sense only when they are placed in groups.

 ✓ One element of a radio group is selected. In a radio button group, selecting
one button deselects the others. It’s like a car radio, where clicking one of the
preset buttons deselects the others. (It’s really like the old car radios where
if the selected station was physically pushed in, the others would pop out.
I’m not going to mention that, though, because it would make me seem old.)

 ✓ There should always be one element selected. When you build a radio
group, you should always make one element of the group selected. If not,
any programs attached to your form will get confused.

 ✓ The id of each radio button is still unique. Each id on a Web page must
be unique, and the id elements of each radio button will follow the same
rules as usual.

 ✓ Each radio element also has a name attribute. The name attribute is used
to specify the entire group of radio objects.

 ✓ All radio buttons in a group have the same name. HTML uses the name
attribute to figure out which group a radio button is in, and to ensure that
only one button in a group is selected.

Building a radio group is quite similar to creating checkboxes, but there are a
few differences.

 1. Begin by creating an input element. As usual, the input element pro-
vides the basic foundation.

 2. Set the type to radio. Use the type attribute to form radio buttons.

 3. Give each element a unique id. As usual, apply a unique id to each radio
button.

 4. Give all buttons in a group the same name. Use the name attribute to iden-
tify the buttons in a group.

 5. Consider visual grouping as well. The user won’t be able to tell which buttons
are part of a group by the HTML formatting alone. It might be best to use field-
sets or other formatting tricks to help the user know which buttons are in
which group. All buttons in one group should be physically near each other.

04_9781118012529-ch02.indd 3804_9781118012529-ch02.indd 38 3/21/11 8:52 AM3/21/11 8:52 AM

Making a Form 39

 6. Make one of the buttons checked (selected) by default. Apply the checked
= “checked” attribute (provided by the department of redundancy
department) to one of the elements so it will start out checked.

Putting in action buttons

One more critical form element is the ubiquitous button. Buttons are great
because they just sit there looking irresistible. Users normally expect something
important to happen when they click a button. There are actually three main
types of buttons, although they all look identical to the user.

 ✓ Standard button: A standard button just looks like a button. These buttons
are usually used in JavaScript programming to trigger some kind of action
on the client end. You use this type of button a lot in JavaScript.

 ✓ Submit button: This button is normally used in server-side programming.
It packages up all the data in the form and submits it to a program that
lives on a remote Web server.

 ✓ Reset button: This special button type has built-in behavior. When the user
clicks a reset button, all the data in the form is reset to its original default
values.

In addition to the three types of buttons, button elements can be created in two
different ways. The amazing input element can be used to build a button as
well, like this:

 <input type = “button”
 value = “input button” />

When used in this way, the value property becomes the label of the button,
and the type property indicates which type of button you intend to build. It
isn’t necessary to add a label to a button because the label is implied.

This is the original way buttons were created in HTML, and it’s still commonly
used. But buttons aren’t really used for input; they’re used to specify that the
user wants to do something. For that reason, a new button syntax has evolved:

 <button type = “button”>
 standard button
 </button>

This syntax introduces a button tag with start and end tags. The type attribute
is used to indicate which type of button you want to use. (The default type is
“submit,” used primarily in server-side development, which is not the focus of
this book.) The text inside the button indicates the text printed on the button. I
tend to use the button syntax because I think it’s cleaner, and also because it
makes CSS formatting (see Part 5) a bit easier, as buttons are rarely formatted in
the same way as other input elements.

04_9781118012529-ch02.indd 3904_9781118012529-ch02.indd 39 3/21/11 8:52 AM3/21/11 8:52 AM

40 Part 2: HTML Foundations

Validating Your Pages
The guidelines described in this part will generally give you a decent Web site,
but if you’re like me, you’ll still make sloppy mistakes sometimes. It would be
great if you had some sort of tool that acted like a spell-checker for code. It
could look for dumb mistakes like missing tags and stuff that’s out of order.
Sometimes you’ll have junk like that in your code, and you won’t even know it’s
a problem. It may look fine on your browser, but mistakes like this have a habit
of appearing when you’re hooked up to a projector showing hundreds of people
how to build Web sites. (Well, maybe that’s just me. . . .)

Fortunately, there is exactly such a code-checker available. The W3 consortium
(the same guys who came up with the standards in the first place) have pro-
vided a software tool that allows you to check any page to see if it complies with
the standards you’ve declared in the doctype. This tool is called the W3 valida-
tor, and it’s available at this cleverly named address:

http://validator.w3.org

Figure 2-7 shows a page being checked by the W3 validator.

The validator is great, but it’s not perfect. It can’t find every mistake, and of
course it works only when you’re connected to the Internet. More troubling, the
error messages it gives you are sometimes very mysterious and not very helpful.

 The W3 validator checks XHTML and HTML5 code. As HTML5 becomes more
common, watch for other tools to be available directly in your browser and
editor to simplify validating HTML5 code.

Figure 2-7

04_9781118012529-ch02.indd 4004_9781118012529-ch02.indd 40 3/21/11 8:52 AM3/21/11 8:52 AM

New or Changed
HTML5 Elements
The interesting thing about having a new version of HTML is the new tags.
HTML5 introduces a number of new tags. In addition, a few old friends have new
variations. This part takes a look at the new tags and also discusses how some
of the old tags have changed.

 Be sure to check out my Web site for working examples of every code fragment
in the book: www.aharrisbooks.net/h5qr.

In this part . . .

✓ Getting Familiar with Semantic Page Elements

✓ Taking a Look at Inline Semantic Elements

✓ Reviewing the Much-Anticipated Media Elements

✓ Understanding Ruby Elements

Part 3

05_9781118012529-ch03.indd 4105_9781118012529-ch03.indd 41 3/21/11 9:37 AM3/21/11 9:37 AM

42 Part 3: New or Changed HTML5 Elements

Semantic Page Elements
HTML5 reinforces the notion of semantic markup. That is, tags are not supposed
to describe how a section of the page looks, but instead should describe the
meaning of the section in the page context. As Web developers began to
embrace these changes in XHTML, pages were full of <div class = “x”>
markups. The semantic page elements added in XHTML are meant to add first-
class tags to a few elements common on every page.

<Tip>Firefox 3 supports most of the semantic tags (header, article, footer,
and so on) but it displays them as inline elements. Add display:block to
these elements in CSS, and they’ll appear as expected (although they’ll still need
more CSS to do anything special).

address

The <address> tag is intended to hold contact information for the author of a
page or section. Although it was available in HTML 4, the <address> tag is now
intended to be used inside either the entire page content or inside a section or
article to indicate the author of that section. Other tags (especially anchors to
e-mail addresses or page links) can be embedded in the address.

 <address>
 10475 Crosspoint Blvd

 Indianapolis, IN 46526
 </address>

 Most browsers render addresses as italics, but this is not guaranteed. Like any
HTML tags, you can modify exactly how the content of the address appears
with CSS.

article

An article is a subset of the page. The <article> tag should be used to indicate
content that came from an outside source or is somehow independent of the
main page contents. Typically, articles are used to mark sections of the page
that are brought in from some sort of aggregation system.

 <article>
 <header>
 <h1>From

 JavaScript and AJAX for Dummies

 </h1>

05_9781118012529-ch03.indd 4205_9781118012529-ch03.indd 42 3/21/11 8:53 AM3/21/11 8:53 AM

Semantic Page Elements 43

 </header>

 <p>
 Every once in a while, a technology comes along that
 threatens to change everything. AJAX is one such
 technology. In this book, you learn what all the fuss
 is about and why AJAX is such a big deal.
 </p>
 </article>

Most browsers do not add any particular formatting to an article; that is up to the
CSS definition. Most articles will include a link to the original page if the article is
from an online document. The <article> tag does not import data from an exter-
nal source. It only indicates that the relationship is external. For more integrated
content, use the <section> tag instead. Note that if the article contains a header
tag, it is appropriate for the article to have its own h1 heading. This allows page
aggregators to pull pages from multiple sources and apply appropriate formatting.

aside

The <aside> element is used to indicate a page fragment that is related to but
separate from the main content. Aside text is typically formatted as a sidebar.

 <aside>
 This is a secondary comment
 </aside>

 Note that most browsers have not agreed on how to display the aside element
(if at all).

footer

The <footer> tag is used to represent the footer content of a page. Normally this
section contains author contact information (commonly in an <address> tag).

 <footer>
 <h2>Footer</h2>
 <address>
 Andy Harris

 andy@aharrisbooks.net
 </address>
 </footer>

Browsers do not automatically provide style to the footer. Instead, the CSS will
determine where the footer actually goes. The <footer> tag is mainly intended
to replace the <div id = “footer”></div> idiom commonly used in HTML
4 and XHTML.

05_9781118012529-ch03.indd 4305_9781118012529-ch03.indd 43 3/21/11 8:53 AM3/21/11 8:53 AM

44 Part 3: New or Changed HTML5 Elements

header

The <header> tag is primarily used to specify a page header. It replaces the
<div id = “header”> idiom frequently used in HTML 4 and XHTML.

 <header>
 <h1>This is my header</h1>
 </header>

The header normally contains an h1 and other information that belongs in the
visual masthead of the page. Do not confuse the <header> element (which is a
visible section of the page) with the <head> element (which contains metadata
not shown to the user). Also note that the <header> element does not replace
the <h1> through <h6> elements, but usually contains them.

Most browsers do not provide any default formatting to the header. The Web
developer is expected to add any desired formatting through CSS.

The <header> element has one more use. It can be used inside a section or arti-
cle to indicate that an h1 inside that element is a level-one heading for the ele-
ment, not for the page. This is useful because a page should have only one
level-one element. Many pages are built by aggregators or content management
systems, so each article and section can have a level-one heading without con-
flicting with the page’s primary heading.

hgroup

The <hgroup> tag is used to combine a heading and one or more subheadings
into one logical group. The normal heading structure is intended to serve as an
outline for the page. Using an h1 heading with an immediate h2 as a subhead
interferes with the outlining capabilities. You can put multiple headings in an
hgroup, and only the initial heading is considered by automatic outlining tools.

 <hgroup>
 <h1>History of the world</h1>
 <h2>(without all the icky stuff)</h2>
 </hgroup>

The hgroup does not provide any particular formatting to the header group.

menu

The <menu> tag and the associated <command> element are used to add various
types of menu systems.

 <menu>
 <command label = “one”
 onclick = “alert(‘uno’)”>
 <command label = “two”
 onclick = “alert(‘dos’)”>

05_9781118012529-ch03.indd 4405_9781118012529-ch03.indd 44 3/21/11 8:53 AM3/21/11 8:53 AM

Semantic Page Elements 45

 <command label = “three”
 onclick = “alert(‘tres’)”>
 </menu>

The <menu> tag supports a type attribute that indicates the menu’s behavior:

 ✓ list: Present the commands much like a list.

 ✓ context: Expected to act like a pop-up menu when the user right-clicks an
element.

 ✓ toolbar: The commands will be presented as a toolbar.

The menu element is designed to contain instances of <command>. (See the
“command” section later in this part for details and attributes of the command
element.) Additionally, the menu element does not have any particular visual
display associated with it. None of the major browsers display menus with com-
mands yet. (See the “command” section later in this part for a workaround.)

 Note that the menu element has an entirely different meaning in HTML5 than it
did in HTML 4. In HTML 4, the menu item was a type of list.

nav

The <nav> tag is used to indicate a part of the page set aside for page naviga-
tion. This is meant to be a replacement for the <div id = “nav”> idiom fre-
quently used in HTML 4 and XHTML.

 <nav>
 <h2>Navigation</h2>

 link a
 link b
 link c
 link d
 link e

 </nav>

The nav element does not have any default formatting. The Web developer is
expected to add CSS to determine how the element will look and where it is
placed on the page.

section

A section is a generic division of a page. A page or an article can be broken
into numerous sections. The section element is intended to be more specific
than the <div> tags currently used in HTML 4 and XHTML markup.

05_9781118012529-ch03.indd 4505_9781118012529-ch03.indd 45 3/21/11 8:53 AM3/21/11 8:53 AM

46 Part 3: New or Changed HTML5 Elements

 <section id = “1”>
 <h2>Section 1</h2>
 <p>Section body...</p>
 </section>

So far, there is very little support for the <section> tag among modern brows-
ers. The <article> tag or the standard <div> tag are suitable replacements
until browsers begin supporting the section element. Use the detect script
described in Part 1 to see if your browser supports this or any other tag before
you try to use it.

Inline Semantic Elements
In addition to the page-level semantic element (which adds structure to the
entire page), a number of other new or modified tags are intended to add new
elements inside a page.

command

The <command> tag is used in the context of the <menu> tag to add a menu
system to a page. It can also be used outside of the <menu> tag anywhere on the
page to define a keyboard shortcut.

 <menu>
 <command label = “one”
 onclick = “alert(‘uno’)”>
 <command label = “two”
 onclick = “alert(‘dos’)”>
 <command label = “three”
 onclick = “alert(‘tres’)”>
 </menu>

The <command> tag accepts a number of attributes:

 ✓ icon: Indicates the address of an image that will serve as an icon for this
command.

 ✓ checked: Shows if the current command is checked (makes sense only for
checkbox and radio commands).

 ✓ disabled: If this attribute is present, the command is disabled.

 ✓ label: Identifies the text that will be displayed to the user.

 ✓ onclick: Indicates a single line of JavaScript code to execute when the
user clicks the command.

05_9781118012529-ch03.indd 4605_9781118012529-ch03.indd 46 3/21/11 8:53 AM3/21/11 8:53 AM

Semantic Page Elements — Inline Semantic Elements 47

 ✓ title: Displays a tip to the user about what the command does.

 ✓ type: Determines the type or behavior of the element. (This can be com-
mand, checkbox, or radio.) The types correspond to the same types in
ordinary form input elements.

At present, no major browsers support the <command> tag. However, since the
onclick attribute can now be attached to nearly any HTML element, you can
simulate a list-style menu with the following code:

 <menu>
 <li onclick = “alert(‘a’)”>alpha
 <li onclick = “alert(‘b’)”>beta
 <li onclick = “alert(‘g’)”>gamma
 </menu>

 While the preceding code is the old HTML 4 interpretation of the menu list, it
still validates as HTML5.

Of course, you’ll probably want to use CSS to style the list items so they look
more like buttons or something clickable.

details

The details element can contain a summary element and other HTML tag. By
default, only the summary is visible. When the user activates the details by click-
ing on the summary, the rest of the content in the details element is displayed.
This allows a convenient way to hide and show content.

dfn

The <dfn> tag represents a term being defined. Surround the term to be defined
with the <dfn></dfn> tags.

 <p><dfn>flollop:</dfn>
 The sound a mattress makes when falling into
 a swamp.

 -- Douglas Adams
 </p>

Most browsers format the <dfn> tag as italics, but this can be changed through
CSS. The dfn element does not replace the definition list, which is still used for
many types of name-value pairs (although it was designed originally for
definitions).

figcaption

The <figcaption> tag provides a caption for a figure and should be contained
inside only a <figure> tag. See “figure,” next in this part, for more information.

05_9781118012529-ch03.indd 4705_9781118012529-ch03.indd 47 3/21/11 8:53 AM3/21/11 8:53 AM

48 Part 3: New or Changed HTML5 Elements

figure

A figure is a semantic element that describes one or more images with an
optional caption. The <figure> tag does not directly display any images; it’s
meant as a container for holding any type of image (including the standard
 tag but could also include SVG or canvas images). The image can be sup-
plied with an optional caption using the <figcaption> tag.

 <figure>
 <img src = “apoyo.jpg”
 alt = “laguna apoyo” />
 <figcaption>Laguna De Apoyo, Nicaragua</figcaption>
 </figure>

You can put more than one image inside a figure.

 So far, browsers do not provide any particular style or formatting for figures and
captions, but these items can be styled through CSS.

summary/details

The summary tag is intended to work along with the details tag to provide a
summary element visible to the user. When the user clicks the summary, all
other content in the details element, which was previously hidden, becomes
available.

<details>
 <summary>Batman’s secret identity</summary>
 <p>Bruce Wayne</p>
</details>

Note that no major browsers yet support the summary/details combination.
Both the summary and the details will be displayed. You can simulate the
expected behavior through CSS and JavaScript code.

time

The time element provides a field for representing a date or time. This field will
contain a date, a time, or a date and a time.

 <p>
 The rooster crows at <time>6:30</time>
 every morning.
 </p>

Browsers do not currently apply any special formatting to time elements. Data
encoded in time elements should be formatted in a standard way so they can
be adjusted for time zones.

05_9781118012529-ch03.indd 4805_9781118012529-ch03.indd 48 3/21/11 8:53 AM3/21/11 8:53 AM

Inline Semantic Elements — Media Elements 49

wbr

The wbr element is used to add suggestions for word breaks. Put this tag inside
a long word to indicate the appropriate place to break the word for word wrap
purposes.

 <p>
 The wbr tag is used to mark a space in a long word
 where it would be ap<wbr>propriate to break the
 word if necessary.
 </p>

No current browsers support this tag yet.

Media Elements
Perhaps no feature of HTML5 is more anticipated than the media elements. At long
last, HTML supports audio and video without an external plugin. Equally exciting is
the support for vector-based graphics through the canvas and svg mechanisms.

audio

The <audio> tag allows the user to embed an audio file directly into the browser.

 <audio src = “DoYou.ogg” controls>
 DoYou.ogg
 </audio>

If the browser does not support the <audio> tag, the code between <audio> and
</audio> will be presented instead, so you can provide an ordinary link to let the
user download the audio. Or you can embed a Flash player for older browsers.

The <audio> tag supports several standard attributes:

 ✓ autoplay: If this attribute is present, the audio file will play immediately
when the browser loads the page. Generally this option should not be used,
as it’s considered rude to play audio without the user’s explicit permission.

 ✓ controls: If this attribute is present, the browser will present a simple
control interface including play/pause, volume control, and some sort of
position indicator. Browsers differ on exactly how the controls appear. It’s
preferable to give the user some sort of control either through the built-in
control mechanism or JavaScript code.

 ✓ preload: If this attribute is present, the audio file will begin to load in
memory as soon as the page is loaded, but it will not play until the user

05_9781118012529-ch03.indd 4905_9781118012529-ch03.indd 49 3/21/11 8:53 AM3/21/11 8:53 AM

50 Part 3: New or Changed HTML5 Elements

activates the player. This can prevent the buffering that might occur if
the audio is not preloaded.

 ✓ src: Indicates the address of the file. Note that the <source> tag is pre-
ferred, as it allows for multiple options.

The <audio> tag is supported in some way by all major browsers, and it’s
expected to be supported in Internet Explorer 9 (IE9). However, the actual audio
file formats are not codified in the standard, so different browsers (naturally)
support different formats. Most browsers support the open source Ogg stan-
dard, but a few (notably Safari and IE9) prefer Mp3. If you supply a version of
each, it’s likely that any late-model browser will support your audio. Use the
<source> tag to include multiple audio sources:

 <audio>
 <source src = “DoYou.ogg”>
 <source src = “DoYou.mp3”>
 </audio>

Note that the audio element can be controlled through JavaScript code. The fol-
lowing code (invoked in body.onload) adds a song element to the page with-
out displaying the audio element:

 var song;

 function init(){
 song = document.createElement(‘audio’);
 song.setAttribute(‘src’, ‘DoYou.ogg’);
 } // end init

The code creates an element called song and preloads an Ogg file into that
song. The following HTML code creates a play button:

 <button type = “button”
 onclick = “song.play()”>
 play
 </button>

Of course, this button can be styled in any way you want to create your own
interface. Once you have an audio element identified in your page, you can
apply the following JavaScript functions to it:

 ✓ play: As you might guess, this plays the file. Surprisingly, there is no stop
command. You’ll either need to pause or set the volume to zero.

 ✓ pause: This pauses the sound. The next play command begins at this spot.

 ✓ setAttribute: This function allows you to modify any of the attributes
you would normally set on the HTML <audio> tag. This is mainly used to
attach a src to the audio element.

05_9781118012529-ch03.indd 5005_9781118012529-ch03.indd 50 3/21/11 8:53 AM3/21/11 8:53 AM

Media Elements 51

You can also access a number of useful properties:

 ✓ currentTime: This indicates where (in seconds) the song is currently
playing. You can read it to find the current position, or set it to cue to a
particular part of your song.

 ✓ volume: The volume goes from 0 (silent) to 100 (maximum.) You can set
or retrieve this attribute through JavaScript code.

canvas

The <canvas> tag sets up a portion of the screen for program-controlled graph-
ics. The HTML simply sets aside a portion of the screen to be used as a canvas.
All the drawing and manipulation of the image is done through JavaScript code.
The following HTML code sets up a canvas element and provides a button.

 <canvas id = “myCanvas”
 width = “300”
 height = “200”>
 This example requires HTML5 canvas support
 </canvas>

 <button type = “button”
 onclick = “draw()”>
 click me to see a drawing
 </button>

The canvas element does little on its own. To do anything interesting with the
canvas tag, use JavaScript to extract a drawing context (a special element that
can be drawn on) and use the methods of that context object to create dynamic
graphics. For example, here is the draw() function that will be enabled when
the user clicks the button:

 function draw(){
 var myCanvas = document.getElementById(“myCanvas”);
 var context = myCanvas.getContext(“2d”);
 context.fillStyle = “blue”;
 context.strokeStyle = “red”;
 circle(context, 1, 1, 1);

 for (i = 1; i <= 200; i+= 2){
 circle(context, i, i, i, “blue”);
 circle(context, 300-i, 200-i, i, “red”);
 circle(context, 300-i, i, i, “blue”);
 circle(context, i, 200-i, i, “red”);

05_9781118012529-ch03.indd 5105_9781118012529-ch03.indd 51 3/21/11 8:53 AM3/21/11 8:53 AM

52 Part 3: New or Changed HTML5 Elements

 } // end for

 } // end draw

 function circle(context, x, y, radius, color){
 context.strokeStyle = color;
 context.beginPath();
 context.arc(x, y, radius, 0, Math.PI * 2, true);
 context.stroke();
 } // end circle

The output of the preceding canvas example code is shown in Figure 3-1.

Figure 3-1

Most modern browsers support some form of the canvas tag directly. IE cur-
rently does not support the canvas tag, but you can use the ExplorerCanvas
plugin to add canvas functionality to IE. IThe IE9 beta appears to support the
canvas tag, so this may soon be a universal element.

At the moment, there is only a 2D drawing context available, but support is
eventually planned for a 3D drawing context that will allow 3D graphics directly
in the browser.

The context object controls all the actual drawing functionality. Here are a few
of the main methods of the context object:

 ✓ arc(): The arc command draws an arc (portion of a circle) as part of a
path. The arc is defined like a circle, with a center and radius, but also with
beginning and ending angles. If the angles describe a full circle (0 to 2 × pi
radians), the arc command will draw a full circle. See the preceding exam-
ple for a custom circle function created from the arc command.

 ✓ beginPath(): This command begins the definition of a path. Normally a
path is defined by a single moveTo command, followed by a series of
lineTo commands, and finished by a stroke, closePath, or fill.

 ✓ closePath(): This command connects the last point of a path (drawn
with moveTo and lineTo commands) to the first, creating a closed shape
that can be filled.

05_9781118012529-ch03.indd 5205_9781118012529-ch03.indd 52 3/21/11 8:53 AM3/21/11 8:53 AM

Media Elements 53

 ✓ drawImage(): The drawImage command allows you to draw an image (from
an external image file) on the canvas. Many implementations allow pixel-level
manipulation, allowing you to apply custom filters and transformations to
your images, which allows far more control than the typical tag.

 ✓ fill(): The fill command (and its variants — like fillRect) allows you to
apply the current fill style to elements drawn on the screen.

 ✓ fillRect(): This command builds a rectangle of a specified size and
position, filled in with the current fill style.

 ✓ fillStyle(): Allows you to specify the fill style. This can be a standard
color value, or a predefined gradient.

 ✓ lineTo(): This command (along with the moveTo command) allows you
to build a path on the screen. The lineTo command takes a point as input
and draws from a previously defined point to the current point. Note that
the path is not displayed until the application of the stroke function.

 ✓ lineWidth(): This defines the width of the line being drawn by a stroke
command.

 ✓ moveTo: Used in path definition, the moveTo command is used to indicate
the starting point of a path.

 ✓ stroke(): This command draws the currently defined path. Note that
paths are not immediately drawn; the stroke command actually draws the
path on the screen.

 ✓ strokeRect(): This command draws an unfilled rectangle.

 ✓ strokeStyle(): Determines the style of the next stroke to be drawn.
Most drawing contexts support dotted and dashed stroke styles, but more
are expected.

 ✓ text: Some implementations of the canvas tag allow for text manipulation.
This support is uneven, but it is likely to become common in future
implementations.

The canvas tag is one of the most important new features of HTML5, as it
allows nearly unlimited control of the visual interface. Game developers have
begun creating online games using the canvas, and it has already become the
basis of several innovative user interface experiments (notably Google maps.)

 For more information on programming the canvas element, see Part 8 and also
check out http://dev.w3.org/html5/canvas-api/canvas-2d-api.html.

embed
The <embed> tag is a universal media tag, so to speak. It can (theoretically, at
least) be used to embed any kind of media into the page, specifying the type of
media that is to be displayed.

05_9781118012529-ch03.indd 5305_9781118012529-ch03.indd 53 3/21/11 8:53 AM3/21/11 8:53 AM

54 Part 3: New or Changed HTML5 Elements

 <embed src = “monsterTraffic.swf”
 type = “application/x-shockwave-flash”
 width = “400”
 height = “400” />

This tag allows you to embed media that isn’t supported with other media tags.
It uses the type attribute to determine the appropriate plugin to use based on
MIME type. However, there’s no guarantee that the type will be supported. Even if
it is, the particular plugin used to display the element is controlled by the client.

 The <embed> tag was actually removed from HTML and XHTML because it was
so unreliable, but it was placed back into use in HTML5. Use embed only as a
backup to a more reliable tool like the img, audio, or video tags.

The embed element is still the best option for including Flash elements, particu-
larly as a backup to the audio or video elements.

source

The source tag is used inside an audio or video element to indicate the
source of a media element. Multiple sources can be listed. The browser will try
each source in order until it finds one it can use. This is the preferred way to
indicate multiple possible encodings in an audio or video element. See the
“audio” section earlier in this part for an example.

svg

The <svg> element allows the author to build a vector-based image directly in
the page using the SVG markup language.

<svg xmlns:xlink=”http://www.w3.org/1999/xlink”
xmlns=”http://www.w3.org/2000/svg”
viewBox=”0 0 200 100”
width=”200px” height=”100px”>

<circle cx=”50” cy=”50” r=”30”
 style=”stroke:#0000ff; stroke-width: 5px;
fill:#ff0000;”/>

<rect x = ”100”
 y = ”0”
 height = ”50”
 width = ”50”
 stroke-width = ”2px”
 stroke = ”#ffff00”
 fill = ”#00ff00” />

</svg>

05_9781118012529-ch03.indd 5405_9781118012529-ch03.indd 54 3/21/11 8:53 AM3/21/11 8:53 AM

Media Elements 55

The output of the svg.html example code here is shown in Figure 3-2.

Figure 3-2

SVG uses an XML system very similar to XHTML. Each element is described by a
tag, which has various attributes defining its size, position, and color. SVG ele-
ments can also be modified by a form of CSS. It’s also possible to use JavaScript
code to create and modify SVG code in real time. SVG is often used to create charts
or other visualizations dynamically. Also, it’s possible to export an SVG image from
a tool like Dia or Inkscape, and embed the resulting drawing directly in the page.

The main advantage of a vector-based image format like SVG is the ability to
scale the image without losing image quality.

All major browsers except IE already support some level of SVG in the most cur-
rent release, and Microsoft plans to include SVG in IE9.

 For more information on the SVG standard, please see the W3C SVG page at
www.w3.org/Graphics/SVG.

video

The video element is one of the more anticipated features of HTML5. With this
tag, developers will be able to embed videos into a Web page without requiring
a plugin like Flash.

 <video src = “bigBuck.ogv” controls>
 Your browser does not support embedded video
 through HTML5.
 </video>

The <video> tag itself is pretty simple to understand, but the actual implemen-
tation is somewhat complex. HTML5 indicates a video tag, but it doesn’t spec-
ify what format the browser will support. It will not surprise you that all the
browser manufacturers have a different opinion about which format will be sup-
ported. At the moment, there are three main video formats in contention.

 ✓ Ogg/Theora/Vorbis: Ogg is a container format which uses Vorbis encoding
for audio and Theora encoding for video. The Ogg system is unencum-
bered by any known patents. It’s supported by Firefox, Chrome, and
Opera. (It’s also supported by Safari if the user has installed the Vorbis
plugin to QuickTime.) IE9 doesn’t plan to support this format at all.

05_9781118012529-ch03.indd 5505_9781118012529-ch03.indd 55 3/21/11 8:53 AM3/21/11 8:53 AM

56 Part 3: New or Changed HTML5 Elements

 ✓ MP4/H.264/AAC: The MP4 standard is a container format using H.264 for
video encoding and AAC for audio encoding. All three formats are subject
to patent restrictions. This format is supported by Safari, Chrome, iPhone,
and Android. IE plans to support it in IE9.

 ✓ WebM/VP8/Vorbis: WebM is a relatively new standard introduced by
Google. It uses the VP8 video encoding format and Vorbis audio encoding.
There’s little support for WebM yet, but most browsers are indicating sup-
port for the format in upcoming versions.

If you want to incorporate HTML5 video, use the <source> tag to include all the
major formats. (You can use the free FFmpeg tool available for all major software
platforms to convert your videos.) As a final fallback, use the <embed> tag inside
your <video> tag to load the video with a Flash player.

You can use JavaScript to control the video element in the same way you con-
trol audio. See the “audio” section earlier in this part for more information
about controlling your media elements through JavaScript code.

Ruby Elements
The Web is a truly international phenomenon. HTML5 acknowledges this phenom-
enon with a series of tags that support Ruby, a form of markup used primarily with
Asian languages.

 Note that Ruby is also the name of a programming language (which originated in
Japan) sometimes used in server-side Web development. In the context of
HTML5, Ruby refers to the markup mechanism, not the programming language.

ruby

The <ruby> tag marks a segment of code that is expected to include Ruby
annotations.

rt

The <rt> tag is placed inside Ruby markup. It contains a pronunciation guide to
the preceding character. It’s primarily used for rarely-used characters in lan-
guages such as Chinese and Japanese.

rp

Officially, the <rp> tag is used when the browser does not support <rt>.

At the moment, no major browsers support any of the Ruby markups.

05_9781118012529-ch03.indd 5605_9781118012529-ch03.indd 56 3/21/11 8:53 AM3/21/11 8:53 AM

New and Modified
Form Elements
Forms have been a part of HTML since the very beginning. As Web sites have
morphed into application frameworks, the basic form elements are beginning to
show their age. A number of tools (including XForms and third-party add-ons
like jQuery UI) have tried to give form elements a face-lift. HTML5 finally adds
some much-needed attention to form elements. The standard includes several
new form elements as well as a number of additions to the standard input ele-
ment and new attributes that can be applied to any form element.

In this part . . .

✓ Introducing New Form Elements

✓ Examining New Form Element Attributes

✓ Playing with New Form Input Types

Part 4

06_9781118012529-ch04.indd 5706_9781118012529-ch04.indd 57 3/21/11 9:38 AM3/21/11 9:38 AM

58 Part 4: New and Modified Form Elements

New Form Elements
A number of new form elements have been introduced in HTML5. Each of these
new tools adds a new capability. Of course, they’re not all supported yet, but
they do show some promise. A notable subset of these form elements are
designed to let a program modify a part of the page dynamically.

datalist

The datalist element allows the developer to attach a list of suggestions to a text
input element. As soon as the user begins to type in the text field, the list of sugges-
tions appears and the user can choose from the suggestions with the mouse.

 <label for = “txtList”>Your name
 <input type = “text”
 list = “names”
 id = “txtList”/>
 <datalist id = “names”>
 <option value = “Andy”>
 <option value = “Andrew”>
 <option value = “Androcles”>
 </datalist>
 </label>

The datalist element is currently supported by Opera only. You can embed
an ordinary HTML <select> element (with the same id as the text element)
inside the datalist object. Browsers that can support the datalist will do so,
and others will display the select element.

A number of other fields (notably the number input type) have a list attribute
that connects that element to a datalist. This is intended to allow a datalist to be
connected to other kinds of input, but there is little support yet for this behavior.

fieldset

The fieldset element isn’t technically new to HTML5, but it’s not widely used
by developers. All form elements are supposed to be embedded in some sort of
block-level element, and the fieldset is the obvious tool for the job. By
default, the fieldset draws a simple black border around its child tags. Use
the <legend> tag to add a label to the fieldset.

 <form action = “”>
 <fieldset>
 <legend>My Form</legend>
 <label for = “myInput”>
 <input type = “text”
 id = “myInput” />
 </label>

06_9781118012529-ch04.indd 5806_9781118012529-ch04.indd 58 3/21/11 8:53 AM3/21/11 8:53 AM

New Form Elements 59

 </fieldset>
 </form>

The fieldset element is supported in all major browsers.

keygen

The keygen element generates an encryption key for passing encrypted data to
a server.

 <label for = “key”>keygen
 <keygen id = “key”
 keytype = “rsa”
 challenge = “openSesame” />
 </label>

The <keygen> tag has a number of parameters:

 ✓ keytype: Specifies the type of encryption. (rsa is standard.)

 ✓ challenge: A string that is passed along with the public key. (This is nor-
mally specified by the server.)

The keygen element is hotly debated in the HTML5 community. Some security
experts consider its encryption mechanism already obsolete, and use of the tool
requires knowledge of encryption that a relatively small number of Web devel-
opers possess. The keygen element isn’t currently supported in any browser,
and it may not become a part of the standard.

label

Like the fieldset element, the label has been around for some time but has
been underutilized. The label tag allows you to attach an HTML element to a
form input element. The for attribute holds the id of the element related to the
label. Form elements are often embedded into labels to simplify CSS formatting,
and the label can offer some user-interface advantages. For example, if a label is
attached to a check box or radio option, the user can click the label or the
option to make a choice.

 Some Web developers embed an input tag inside the corresponding label for
easier CSS formatting. I use that technique throughout this reference.

Use of fieldsets, labels, and some basic CSS eliminates the need to use tables for
form layout. The following CSS shows one easy way to make a form line up
nicely without adding the extra complexity of tables for layout management:

 <style type = “text/css”>
 label{
 display: block;
 width: 60%;

06_9781118012529-ch04.indd 5906_9781118012529-ch04.indd 59 3/21/11 8:53 AM3/21/11 8:53 AM

60 Part 4: New and Modified Form Elements

 text-align: right;
 margin-right: 1em;
 }
 input {
 width:40%;
 }
</style>

meter

The meter tag indicates a numeric value that falls within a range.

 <p>
 A
 <meter min = “0”
 max = “10”
 value = ”7”></meter>
 </p>

The meter tag can be placed in a form or anywhere else it is desirable to indi-
cate that a value falls within a prescribed range. The meter tag supports a
number of attributes:

 ✓ value: If this is not specified as an attribute, the first numeric value inside
the <meter></meter> pair will be seen as the value.

 ✓ max: The maximum possible value of the item.

 ✓ min: The minimum possible value of the item.

 ✓ high: If the value can be defined as a range, this is the high end of the
range.

 ✓ low: If the value can defined as a range, this is the low end of that range.

 ✓ optimum: This is the optimal value of the element.

The value, high, low, and optimum values should all be between min and max.
No particular display mechanism is indicated for this element, though the web-
kit-based browsers currently display a small bar graph. Note that the meter ele-
ment is used to output a numeric element. Use <input type = “range”> for
numeric input within a range.

The meter tag is often used in a form, but it can occur anywhere in a docu-
ment. The value of the meter can be changed dynamically through JavaScript
like the value of any form element.

06_9781118012529-ch04.indd 6006_9781118012529-ch04.indd 60 3/21/11 8:53 AM3/21/11 8:53 AM

New Form Elements 61

output

The output element is meant to display text output. It indicates a section of the
page that will be modified by a script (usually JavaScript). Consider the follow-
ing code fragment:

 <output id = “myOutput”>
 This is the original value
 </output>
 <button onclick = “changeOutput()”>
 change the output
 </button>

When the button is pressed, it will call the changeOutput() JavaScript func-
tion, which could look like this:

 function changeOutput(){
 var myOutput = document.getElementById(“myOutput”);
 myOutput.value = “The value has changed”;
 } // end changeOutput

When this function runs, it changes the content of myOutput.

The output element is currently supported by Opera. It does not have any par-
ticular visual style associated with it.

Until usage of this element becomes more widespread, you can use the innerHTML
attribute of any page element to change its content dynamically through code.

The output tag is often embedded in forms, as it’s a user-interaction element,
but it can occur anywhere in the page.

progress

The <progress> tag indicates how much of a task has been completed (often
marked as a percentage).

 <p>Now destroying the world.

 <p>
 progress:
 <progress value = “25”
 max = “100”></progress>
 </p>

Most browsers indicate the progress as plain text, but it’s reasonable to sup-
pose some sort of visual gauge may become available.

06_9781118012529-ch04.indd 6106_9781118012529-ch04.indd 61 3/21/11 8:53 AM3/21/11 8:53 AM

62 Part 4: New and Modified Form Elements

The progress element is expected to be modified through JavaScript code.
Because it’s associated with JavaScript, progress elements are often included
in forms, but they can be placed anywhere on a page.

New Form Element Attributes
In addition to the new form elements introduced in HTML5, all the form ele-
ments got a few new goodies. These new attributes and capabilities can be
applied to any form element.

autofocus

The autofocus attribute can be applied to any form element. If an element has
this attribute, that element will be the focus of the first user input. It’s common
to apply the autofocus attribute to the first element of the form.

 <form action = “”>
 <fieldset>
 <label>name
 <input type = “text”
 autofocus />
 </label>
 <label>email
 <input type = “email”>
 </label>
 </fieldset>
 </form>

If the browser does not accept the autofocus attribute, nothing harmful will
happen, and you can still use a JavaScript-based solution. Of course, it makes
sense to have only one autofocus field per form.

pattern

The pattern attribute allows you to specify a regular expression used to validate
the form. If the content matches the regular expression, the field will be consid-
ered valid. (See the “Validation” section later in this part for more details.) The
pattern attribute should be used only when the standard validation techniques
are not sufficient, as it can be difficult to debug regular expressions.

 <input type = “text”
 id = “txtPhone”
 pattern = “\(\d{3}\) +\d{3}-\d{4}”
 title = “(ddd) ddd-dddd” />

06_9781118012529-ch04.indd 6206_9781118012529-ch04.indd 62 3/21/11 8:53 AM3/21/11 8:53 AM

New Form Elements — New Form Element Attributes 63

When you specify a pattern, you should also include a title attribute. The title
should indicate what the pattern is. The browser can use this as a tip for the
user. It may also be useful to add pattern information as placeholder text. (See
the next section for more information.)

See Chapter 7 of my book JavaScript & AJAX For Dummies (Wiley Publishing) for
a complete description of regular expressions and how to use them for page
validation.

placeholder

The placeholder attribute allows you to add a special placeholder value in
your text fields. This placeholder acts as a temporary label showing the purpose
of the field without requiring a label tag. As soon as the user activates the field,
the placeholder text disappears.

 <input type = “text”
 placeholder = “Name” />

Not all browsers support placeholder text. Other browsers will simply ignore
the placeholder attribute. Likewise, if the field is already filled in, the place-
holder will not be visible. For these reasons, it’s still preferred to add a label so
users know what to type in each text area. Placeholder text is especially helpful
when it’s used to indicate how the input should be formatted (especially if this
will be enforced by validation or a pattern).

required

The required attribute allows you to specify a particular field as required.
Supporting browsers will mark all required fields (perhaps by highlighting them
in red) if they aren’t filled in. Some browsers will also send a warning if the user
tries to submit a form with empty required fields.

 <input type = “text”
 required />

The special :required pseudo-class allows you to apply a CSS style to all required
elements in your form (giving them a border or background color, for example).
Here’s an example of a CSS style for marking required elements with a red border:

 :required {
 border: 1px solid red;
 }

Validation

Form validation is one of the trickiest parts of Web development. It’s pretty easy
to set up a form that asks for user information, but it can be quite difficult to be
certain that the user enters information correctly. For example, an e-mail

06_9781118012529-ch04.indd 6306_9781118012529-ch04.indd 63 3/21/11 8:53 AM3/21/11 8:53 AM

64 Part 4: New and Modified Form Elements

address should contain a few letters, an “at” (@) symbol, a few more letters, a
period, and a top-level domain of two to four characters. Typically programmers
use tricks like regular expression parsing in JavaScript to ensure the data is in
the right format.

 See my book JavaScript & AJAX For Dummies (Wiley) for a complete discussion
of how to do form validation with regular expressions if you need to support val-
idation without HTML5.

HTML5 promises a much easier solution. When you use the special-purpose input
elements (described in the next section), the browser will automatically check the
form field to ensure it’s in a proper format. If the entry is not valid, the form will
(generally) not submit, and the special :invalid CSS pseudo-class will be associ-
ated with the invalid field. Simply supply CSS to your page handling the :invalid
state:

 :invalid {
 background-color: red;
 }

When this CSS state is active, any invalid fields will have the :invalid styling.
For example, if you have a color field and the red background CSS style defined
here, the color field will have a red background unless the user enters in a valid
color (a recognized color name or hex color value). Likewise, the e-mail field will
show red until a valid e-mail address is entered.

The developer doesn’t need to add any other code to the form. Simply add CSS
to display invalid entries, and the browser will do the rest.

Note that if a field is required (with the required attribute), it will be consid-
ered invalid until it contains some value.

It’s possible that the browser will refuse to process a form until all fields are
validated, but this behavior does not yet seem to be universal among HTML5–
compliant browsers.

If you want, you can turn off the validation for any field by adding the novalidate
attribute to that element.

New Form Input Types
HTML forms are centered around the humble but flexible input element. This
same element is used in HTML 4 to build many different types of interface wid-
gets, from standard text and password fields to radio buttons and check boxes.
HTML5 adds a number of very useful forms of input, which help turn HTML into
a more modern user-interface tool.

06_9781118012529-ch04.indd 6406_9781118012529-ch04.indd 64 3/21/11 8:53 AM3/21/11 8:53 AM

New Form Element Attributes — New Form Input Types 65

Although support for these tags is not universal, it’s safe to begin using them
now. Any browser (even IE6) which does not understand the advanced input
types will revert to input type = “text”, which will still work exactly as
expected (although not with the validation and user-interface improvements of
the newer tags).

 Note that the standard indicates that the various types will be supported, but
the exact way the elements are supported will vary from browser to browser.
For example, the e-mail field will likely look just like an ordinary text field to a
user with a standard desktop machine, but the virtual keyboard on a mobile
device might change to include the @ when it encounters an e-mail field.

Most of these specialty fields do support validation, so at a minimum, it’s useful
to set an :invalid CSS style so the user can tell if the data is in the field

color

The color tool allows the user to choose a color using standard Web formats —
recognized color names (yellow) and hex values preceded by a # symbol (#FF0033).
The browser may display a color-picking tool like the ones found in word proces-
sors and image-editing programs. At the moment, most browsers simply display a
text box and indicate whether the current content is a valid color name or value.

 <input type=”color”
 id = “color” />

date

Setting the input type to date indicates that you want the user to enter a date
value. Some browsers (Firefox 3.5) will still display a text field, and others
(Opera 10) will display a special calendar control, allowing for much more accu-
rate and easier date selection. Still other browsers (Chrome) will include both
text and a pop-up calendar. If the date is entered by text, it must be entered in a
yyyy-mm-dd format.

 <input type=”date”
 id = “date” />

You can restrict the dates allowed to a specific range by applying the min and
max attributes to the element.

datetime

The datetime element combines date and time into a single element. It also
includes a mechanism for entering the time zone.

 <input type=”datetime”
 id = ”datetime” />

06_9781118012529-ch04.indd 6506_9781118012529-ch04.indd 65 3/21/11 8:53 AM3/21/11 8:53 AM

66 Part 4: New and Modified Form Elements

Some browsers will pop up a calendar control for the date and a formatted input
for the time. Others may modify virtual keyboards for date and time input.

The official full date and time format returned from the various date and time
elements is a specialized code:

yyyy-mm-ddThh:mm+ff:gg

Each of the characters in the code describes a part of the date and time:

 ✓ yyyy: Four digits for the year.

 ✓ -: An actual dash character, which must be placed between year and
month. Another dash is placed between the month and the day.

 ✓ mm: Two digits for the month.

 ✓ dd: Two digits for the day.

 ✓ T: The capital T indicates the beginning of the time part of the code.

 ✓ hh: Two digits for the hour, in 24-hour format.

 ✓ :: The colon character between the hour and minutes. Another colon will
appear between the hour and minutes of the time zone offset.

 ✓ mm: Two digits for the minutes.

 ✓ +/-/Z: The time zone offset is indicated by a capital Z (if the time is Zulu
or GMT time) or the + or - symbol if time is in another time zone.

 ✓ ff: If the time zone is not Zulu time, indicate the number of hours offset
from GMT.

 ✓ gg: Number of minutes offset from Zulu time. Typically this is 00, but it is
possible that the time zone will be offset by 15, 30, or 45 minutes.

For example, 5:30 PM on October 11, 2010, in New York City will be indicated
like this:

2010-10-11T17:30-05:00

If the user is using a browser that validates a dateTime field, the date and time
will need to be in this format to be considered valid. The value of a dateTime
field will be in this format, which is relatively easy for computer programs to
parse and manage.

datetime-local

The datetime-local element is just like the datetime element except it does
not include a time zone indicator.

 <input type=”datetime-local”
 id = “datetimeLocal” />

06_9781118012529-ch04.indd 6606_9781118012529-ch04.indd 66 3/21/11 8:53 AM3/21/11 8:53 AM

New Form Input Types 67

The datetime-local input type expects and returns a date and time in the
same format as the standard datetime element, except datetime-local does
not include a time zone offset.

email

The email element generally looks like a plain text field, but it validates on an
e-mail address. Also, it is possible that the browser will modify the user experi-
ence in other ways. For example, mobile browsers may modify the virtual key-
board to include the @ symbol, which is always present in e-mail addresses.

 <input type=”email”
 id = “txtEmail” />

month

The month input type generates a four-digit year followed by a two-digit month.
It frequently pops up the same calendar control as other date pickers, but only
the year and month (yyyy-mm format) are returned.

 <input type = “month”
 id = “month” />

number

The number field allows the input of numerical data. This often consists of a text
field followed by some kind of selector (for example, up and down arrows), or it
might change the virtual keypad of a portable device to handle only numeric
input.

 <input type = “number”
 id = “number”
 max = “10”
 min = “0” />

The number input type supports several special attributes:

 ✓ min: This is the minimum value allowed. If there is an onscreen input ele-
ment, it will not allow a value less than the min value. The field will also
not validate if the value of the field is less than the min value.

 ✓ max: This is the maximum allowed value. If there is an onscreen input ele-
ment, it will not allow a value larger than the max value. The field will not
validate if the value of the field is larger than the max value.

 ✓ step: This value indicates how much the visual interface tools (typically
small up and down arrows) will change the value when activated.

 ✓ value: This is the numeric value of the element.

06_9781118012529-ch04.indd 6706_9781118012529-ch04.indd 67 3/21/11 8:53 AM3/21/11 8:53 AM

68 Part 4: New and Modified Form Elements

All attributes of the number element can be integer or floating point. However,
current browsers that support this tag (Opera and Chrome) do not seem to vali-
date as well with floating-point values as they do with integer values. For more
control of numeric input, consider the range input type. (See the next section.)

range

The range input type is a long-anticipated addition to the HTML toolbox. User-
interface experts have known for years that user input of integer values is very
difficult to get right. Most user-interface toolkits have some sort of slider or
scrollbar mechanism, which makes it easy for users to enter a numeric value
visually. The <input type = “range”> construct finally adds this functional-
ity to HTML forms.

 <input type = “range”
 id = “range”
 min = “0”
 max = “255”
 value = “128” />

The range input takes the same attributes as number, min, max, value, and
step. If the browser supports the range tag, the user will see a scroller; if not, a
plain-text input type will appear. When the range element becomes widespread,
its use will be encouraged because it’s much easier to restrict the user’s input to
a valid range (especially when the mechanism for doing so is visual and easy)
than it is to check the user’s input after the fact.

However, the range type doesn’t display the exact value, and it can be harder
to get precise results than with the number input type. One solution is to pair an
output tag to the range, and use JavaScript to update the output when the
range is changed. Here’s a sample form that incorporates this idea:

 <form action = “”>
 <fieldset>
 <input id = “myRange”
 type = “range”
 min = “0”
 max = “255”
 value = “128”
 onchange = “updateOutput()” />

 <output id = “myOutput”>128</output>
 </fieldset>
 </form>

06_9781118012529-ch04.indd 6806_9781118012529-ch04.indd 68 3/21/11 8:53 AM3/21/11 8:53 AM

New Form Input Types 69

When the range value is changed, it calls a JavaScript function called update
Output. Here is that function:

 function updateOutput(){
 //get elements
 var myRange = document.getElementById(“myRange”);
 var myOutput = document.getElementById(“myOutput”);

 //copy the value over
 myOutput.value = myRange.value;
 } // end function

Like the number input type, the range can be given floating-point values if
preferred.

search

The search input type is used to retrieve text that’s intended to be used as part
of a search (either internally or through some searching service like Google). On
most browsers, it’s displayed like an ordinary text field. It does sometimes have
some special behavior. On Safari, the search field is displayed with a small x,
which clears the contents of the search. On Chrome, the autocompletion fea-
tures of the main search bar (which is also the URL input element in Chrome)
are automatically applied to the search box.

 <input type=”search”
 id = “search” />

Like the other new input types, there’s no penalty for using the search element
in browsers that don’t support it. The fallback is a plain-text input.

Note that the search element doesn’t actually do any searching. If you want to
actually search for the value, you’ll still need to write some code. The search
element does give you an interface consistent with the browser’s integrated
search tools, but the actual behavior is still up to the programmer.

tel

The tel field is used to input a telephone number. It expects three digits fol-
lowed by a dash and four digits. You may need to play with the pattern attri-
bute if you want to allow an area code or extensions to validate.

 <input type = “tel”
 id = “tel” />

06_9781118012529-ch04.indd 6906_9781118012529-ch04.indd 69 3/21/11 8:53 AM3/21/11 8:53 AM

70 Part 4: New and Modified Form Elements

time

The purpose of the time input type is to allow the user to enter a time. Time is
stored in hh:mm format, where hh is the hour (in 24-hour format), and mm is the
minutes. Some browsers will include a colon directly in the field, and some will
modify the virtual keyboard with numbers and the colon character. It’s also
possible that a browser will pop up some sort of custom time selector, but this
isn’t yet supported in any major browsers.

 <input type = “time”
 id = “time” />

url

Use the url input type to indicate a Web address. Browsers that support this
element will check for the http:// prefix. Mobile browsers may also adapt the
virtual keyboard to include characters commonly found in URLs: the colon (:),
forward slash (/), and tilde (~).

 <input type = “url”
 id = “url” />

week

The week field is used to pick a week from a calendar control. It returns a value
in the following format:

yyyy-Wnn

 ✓ yyyy: Represents a four-digit year.

 ✓ -: The dash character.

 ✓ W: The capital W character.

 ✓ nn: The week as a two-digit number.

Some browsers will pop up the standard calendar control. When the user
selects a date (or a week), only the year and week will be returned. Other brows-
ers will simply validate for the proper format.

 <input type = “week”
 id = “week” />

06_9781118012529-ch04.indd 7006_9781118012529-ch04.indd 70 3/21/11 8:53 AM3/21/11 8:53 AM

Formatting with CSS
Early forms of HTML paid very little attention to the visual aspects of page layout.
The original plan was for HTML to be more tied to the meaning of page elements
rather than their display. In the very early days of the Web, this was fine, but soon
people wanted far more sophisticated design elements than HTML was capable of
producing. Browser manufacturers responded by adding vendor-specific tags that
added new capabilities but greatly complicated development efforts.

HTML5 is an attempt to return HTML to its earlier simplicity. All the tags that
were once used to directly manage the appearance of the page (tags like
, <center>, , and <i>) are removed. Rather than having special tags
indicate formatting, a new language has been devised that can provide very
powerful formatting features to virtually any HTML/XHTML tag. CSS (Cascading
Style Sheets) is this language.

 This part is a review of CSS as it currently stands. If you’re already familiar with
CSS technology, feel free to skip this part. However, if you need a review of the
current state of the art, you’re in the right place. The CSS described here works
on all major browsers. Part 6 describes the new CSS features available as part of
HTML5.

 Be sure to check out my Web site for working examples of every code fragment
in the book: www.aharrisbooks.net/h5qr.

In this part . . .

✓ Getting an Overview of CSS

✓ Controlling the Look of Your Page

✓ Utilizing Float Positioning

Part 5

07_9781118012529-ch05.indd 7107_9781118012529-ch05.indd 71 3/21/11 9:38 AM3/21/11 9:38 AM

72 Part 5: Formatting with CSS

A Quick Overview of CSS
CSS works by describing certain parts of the page (one particular tag, all the
tags of a specific type, or all tags sharing a particular characteristic). For each of
these tag groups, you can then identify a number of rules. Each rule is a name/
value pair. Take a look at the simple page displayed in Figure 5-1.

Figure 5-1

The code to produce this page is shown here:

<!DOCTYPE HTML>
<html lang = “en”>
<head>
 <title>cssColors.html</title>
 <meta charset = ”UTF-8” />
 <style type = ”text/css”>
 body {
 background-color: yellow;
 }

 h1 {
 color: red;
 }

 p {
 color: blue;
 background-color: white;

07_9781118012529-ch05.indd 7207_9781118012529-ch05.indd 72 3/21/11 8:53 AM3/21/11 8:53 AM

A Quick Overview of CSS 73

 }
 </style>

</head>
<body>
 <h1>CSS Colors</h1>

 <p>
 The heading is red, this paragraph is blue on white, and
the page background is yellow.
 </p>
</body>
</html>

 It goes without saying that a page about colors is disappointing to view in a
black-and-white book. As always, be sure to look on the book’s companion Web
page (www.aharrisbooks.net/h5qr) to see this page in full and try it on your
own machine.

The new elements are not terribly surprising, but they are quite powerful. Note that
the colors are changed without changing anything in the HTML body. All the real
action happens in a special part of the header. This is part of the charm of CSS. It
makes your HTML a lot cleaner because much of the formatting can go elsewhere.
Here’s how to add color formatting (or any CSS, for that matter) to your pages:

 1. Begin with clean valid HTML code. Be sure your HTML code validates
before trying to do too much else with it. Improper HTML won’t always
respond to CSS the way you think it should.

 2. Add a <style> tag to the page heading. The <style> tag allows you to
add a style sheet (a list of formatting instructions) directly on the page.
See “Managing levels of CSS” later in this part for how to put style sheets
in other places.

 3. Set the style’s type to text/css.

 The only value you’ll ever use for style type is text/css.

 4. Indicate the tag you want to modify. The first tag I change is the body.
Changes to the body tag will affect the entire visible part of the page, so this
is a great place to start. Just type the tag name (without the angle braces).

 5. Use squiggly braces ({}) to enclose the rules for this style. You may have
several rules to describe how the body should be displayed. For each
style, you’ll need to enclose all the rules in a pair of braces.

 6. Denote the background-color attribute. Every rule consists of an attribute and a
value. The attribute is a built-in characteristic of the element, and the value is
the value we want to give that attribute. For now, change the background color
of the background, so type background-color:. Note that you must end the
attribute name with a colon (:). Capitalization and spelling count, so be careful.

07_9781118012529-ch05.indd 7307_9781118012529-ch05.indd 73 3/21/11 8:53 AM3/21/11 8:53 AM

74 Part 5: Formatting with CSS

 7. Indicate the value you want to apply to the attribute. For this example, I
want a yellow background, so I just type the value yellow; after the attri-
bute background-color:. This will cause the body’s background color
to be set to yellow.

 8. End each value with a semicolon(;). Every value must end with a semico-
lon. If one tag has a lot of rules (which is common) the semicolons help
the browser separate all the various rules from each other.

 9. Change the foreground color with the color attribute. Note how I make
the level-1 headline red. Set h1 as the new tag, and set its color attribute
to the value red.

 10. One tag can have multiple rules. Take a look at the rules for the paragraph
(p) tag. You’ll see that I set both the foreground and background colors.

 You find more about which colors you can use in the next section. For now, though,
just play around with the various color names. Most of the common color names
will work just like you expect. When you want a fancier color, you’ll have to find out
how to use the fancy hex codes; see “Comprehending hex colors” later in this part.

Employing local styles

CSS has a rich mechanism for working with colors. Whenever you want to spec-
ify a color, you can simply type the color name. Figure 5-2 demonstrates the 16
color names that CSS understands.

Figure 5-2

07_9781118012529-ch05.indd 7407_9781118012529-ch05.indd 74 3/21/11 8:53 AM3/21/11 8:53 AM

A Quick Overview of CSS 75

 A page that demonstrates colors isn’t very useful in a black-and-white book, so
you’ll definitely want to view this page (and all of the others in this book) on my
Web site (www.aharrisbooks.net/h5qr).

The namedColors.html page featured in Figure 5-2 has another trick up its
sleeve. Take a look at the source code and you’ll see what I mean:

<!DOCTYPE HTML>
<html lang = “en”>
<head>
 <title>namedColors.html</title>
 <meta charset = ”UTF-8” />
</head>

 <body>
 <h1>Named Colors</h1>
 <table>

 <tr>
 <th>color name</th>
 <th>color value</th>
 </tr>

 <tr>
 <td>aqua</td>
 <td style=”background-color: aqua;”>
</td>
 </tr>

 <tr>
 <td>black</td>
 <td style=”background-color: black;”>
</td>
 </tr>

 <tr>
 <td>blue</td>
 <td style=”background-color: blue;”>
</td>
 </tr>

 <tr>
 <td>fuchsia</td>
 <td style=”background-color: fuchsia;”>
</td>

 </tr>

 <tr>
 <td>gray</td>
 <td style=”background-color: gray;”>
</td>

07_9781118012529-ch05.indd 7507_9781118012529-ch05.indd 75 3/21/11 8:53 AM3/21/11 8:53 AM

76 Part 5: Formatting with CSS

 </tr>

 <tr>
 <td>green</td>
 <td style=”background-color: green;”>
</td>
 </tr>

 <tr>
 <td>lime</td>
 <td style=”background-color: lime;”>
</td>
 </tr>

 <tr>
 <td>maroon</td>
 <td style=”background-color: maroon;”>
</td>
 </tr>

 <tr>
 <td>navy</td>
 <td style=”background-color: navy;”>
</td>
 </tr>

 <tr>
 <td>olive</td>
 <td style=”background-color: olive;”>
</td>
 </tr>

 <tr>
 <td>purple</td>
 <td style=”background-color: purple;”>
</td>
 </tr>

 <tr>
 <td>red</td>
 <td style=”background-color: red;”>
</td>
 </tr>

 <tr>
 <td>silver</td>
 <td style=”background-color: silver;”>
</td>
 </tr>

 <tr>

07_9781118012529-ch05.indd 7607_9781118012529-ch05.indd 76 3/21/11 8:53 AM3/21/11 8:53 AM

A Quick Overview of CSS 77

 <td>teal</td>
 <td style=”background-color: teal;”>
</td>
 </tr>

 <tr>
 <td>white</td>
 <td style=”background-color: white;”>
</td>

 </tr>

 <tr>
 <td>yellow</td>
 <td style=”background-color: yellow;”>
</td>
 </tr>
 </table>
 </body>
</html>

This page uses a table to demonstrate all the colors that CSS recognizes. Next to
the color name is a table cell with the background color set to that color. Note
that in this case, rather than having one large style sheet at the top of the docu-
ment, I added several smaller styles directly inside the body of the HTML page.
This technique is called local styles.

Most HTML tags have an attribute called style. You can add CSS rules directly
to this style if you want. For example, to make the aqua-colored cell, look at the
following code:

 <td style=”background-color: aqua;”>
</td>

 Local styles are easy to use, but they aren’t perfect. They tend to clutter up the
HTML code, which was exactly what CSS was trying to avoid. Still, the technique
is useful in a few circumstances, like this example.

Making use of ids and classes

CSS is pretty useful because it allows you to quickly add a style to all the elements
of a particular type. For example, you can very easily make all the paragraphs on a
page have the same color. But what if you want to apply a style to only a single
element? And what if you have two kinds of paragraphs that should have different
styles?

Figure 5-3 illustrates the CSS way to solve exactly these problems.

07_9781118012529-ch05.indd 7707_9781118012529-ch05.indd 77 3/21/11 8:53 AM3/21/11 8:53 AM

78 Part 5: Formatting with CSS

Figure 5-3

The CSSLevels.html page mainly consists of paragraphs, but there are three
different paragraph styles. Ordinary paragraphs are light blue with dark blue let-
ters. There are two special kinds of paragraphs. One paragraph has a special
name (fancy). The fancy paragraph has its own styling. There is only one “fancy”
paragraph, but there are two paragraphs using the “alternate” style. Take a look
at the code and then I explain how it all works.

<!DOCTYPE HTML>
<html lang = “en”>
<head>
 <title>CSSLevels.html</title>
 <meta charset = ”UTF-8” />
 <style type = ”text/css”>
 p {
 background-color: lightblue;
 color: blue
 }

 #fancy {
 background-color: black;
 color: white;
 }

 .alternate {

07_9781118012529-ch05.indd 7807_9781118012529-ch05.indd 78 3/21/11 8:53 AM3/21/11 8:53 AM

A Quick Overview of CSS 79

 background-color: blue;
 color: lightblue;
 }

 </style>
</head>

<body>
 <h2>CSS Selectors</h2>
 <p id = ”fancy”>
 This paragraph has fancy styling.
 </p>

 <p>
 This is a regular paragraph.
 </p>

 <p class = ”alternate”>
 This is an alternate paragraph.
 </p>

 <p>
 This is a regular paragraph.
 </p>

 <p class = ”alternate”>
 This is an alternate paragraph.
 </p>

</body>
</html>

First, take a look at the HTML. It’s almost the same, but I’ve added some special
indicators to some of the paragraphs.

 ✓ Ordinary paragraphs: These paragraphs don’t require any special fea-
tures. They will be styled according to the regular p style rule.

 ✓ Named paragraphs: The first paragraph has an id property. This property
allows you to specify a name for any HTML object. The id must be unique,
meaning that only one object on the screen can have any particular id. The id
can be anything you want, but it should be one word without spaces or punc-
tuation. If an object has an ID, you can apply a style to that particular id.

 ✓ Paragraphs in a class: In addition to the id property, you can assign a
class to any HTML element. The class attribute allows you to indicate
that an element is a member of a particular class. Unlike the id, you can

07_9781118012529-ch05.indd 7907_9781118012529-ch05.indd 79 3/21/11 8:53 AM3/21/11 8:53 AM

80 Part 5: Formatting with CSS

have as many elements in the same class as you want. The alternate para-
graphs all have the class attribute set to alternate. You can use any
term you want as a class name, but it should not have spaces or punctua-
tion. You can apply a style to all elements with a certain class. Different
kinds of elements can all have the same class, so you can apply the same
class to paragraphs and headings if you want.

Once you’ve applied ids and classes in the HTML, you can modify the CSS code
to apply styles to the various elements.

Use the number sign (#) in front of the id in your CSS to indicate you want to style
an element with that id. For example, this code styles anything with the id fancy:

 #fancy {
 background-color: black;
 color: white;
 }

Use the period in front of a class name to define a style for a particular class. For
example, you can style all elements of the alternate class with this code:

 .alternate {
 background-color: blue;
 color: lightblue;
 }

Use the id approach when you want to apply a style to an individual element in
the page. Use the tag name when you want to attach a style to all the elements
of a certain type. Use the class mechanism when you want to attach to a number
of elements that may or may not be the same type.

Managing levels of CSS

CSS code can be added to a page in these three different ways:

 ✓ Locally inside the HTML body: You can apply a style directly to most
HTML tags using the style attribute. This technique is illustrated in the
“Employing local styles” section earlier in this part.

 ✓ At the page level in the header: This technique uses a <style></
style> pair inside the head of the HTML page. This is a good way to spec-
ify styles for a specific page.

 ✓ In an external document: A style can be specified in a separate document
and then referenced from a Web page. This approach allows you to share a
set of style rules among several pages. It also cleans up the main page, as
the styles are moved out of the way.

Figure 5-4 demonstrates a simple page that uses an external style sheet.

07_9781118012529-ch05.indd 8007_9781118012529-ch05.indd 80 3/21/11 8:53 AM3/21/11 8:53 AM

A Quick Overview of CSS 81

Figure 5-4

When you look at the source code for Figure 5-4, you’ll see no CSS at all!

<!DOCTYPE HTML>
<html lang = “en”>
<head>
 <title>externStyle.html</title>
 <meta charset = ”UTF-8” />
 <link rel = ”stylesheet”
 type = ”text/css”
 href = ”externStyle.css” />
</head>
<body>
 <h1>This page uses an external style</h1>

 <p>
 No styles are defined directly in the page. They are
called in from
 a separate file, which can be reused by other pages.
 </p>
</body>
</html>

The interesting thing about this listing is how the page clearly has a style, but
the style information is not directly present on the page. The secret is the link

07_9781118012529-ch05.indd 8107_9781118012529-ch05.indd 81 3/21/11 8:53 AM3/21/11 8:53 AM

82 Part 5: Formatting with CSS

tag apparent in the header. This tag allows you to bring in a style from a sepa-
rate page. To build an external link, follow these steps:

 1. Add a <link> tag in the header. The link tag allows you to associate
another file with the current page. It is very useful for attaching a style
sheet to a Web page.

 2. Set the rel attribute to stylesheet. The rel attribute specifies the
nature of the external file. Use the stylesheet value to indicate that you
are attaching a style to the page.

 3. Set the type to text/css. Linked styles are indicated as text/css just
like embedded styles (the ones created with the style tag).

 4. Specify the location of the style sheet with the href attribute. Use the
href attribute to indicate where the style sheet is on the file system. It’s
normally best to use a relative reference for style sheets. This allows you
to move the page and the style sheet to the server together.

 5. You can use the same style sheet over and over. Multiple pages can use
the same style sheet. This is perfect if you have one site that will have
many pages using the same style. You can then change the style on one
page, and the new style will be reflected through the entire site.

The external style is another standard text file that can also be edited with a plain-
text editor. It simply contains the style rules. It does not require the <style></
style> pair. Here’s the externStyle.css page called by externStyle.html:

h1 {
 color: red;
 background-color: yellow;
}

p {
 color: white;
 background-color: black;
}

Managing the Appearance of Your Page
Of course, Web pages do much more than change color. You can modify the
main areas of a page by changing the appearance of text, adding borders and
background images, and changing the overall layout.

Comprehending hex colors
For basic colors (like red and yellow) the color names are perfectly fine, but
sometimes you need something with a little more sophistication. Color names

07_9781118012529-ch05.indd 8207_9781118012529-ch05.indd 82 3/21/11 8:53 AM3/21/11 8:53 AM

A Quick Overview of CSS — Managing the Appearance of Your Page 83

are a bit confusing, and there are only sixteen color names guaranteed to be
understood by CSS. It’s also a bit difficult to adjust colors. For example, ask
yourself what color has just a little more green than aqua?

CSS has a more specific way of indicating colors. It’s a little geeky, but very power-
ful. Each dot on a computer monitor is actually three different tiny color emitters:
red, green, and blue. The computer can adjust the amount of color that comes out
of each of these emitters. If you want to see a red dot, the red emitter is turned to
full strength and the green and blue emitters are turned completely off. You can
combine the emitters to get various colors, so red and green makes blue.

 You might be confused that red and green makes blue, because in elementary
school art class, they taught you a totally different way of mixing colors. Both
are actually correct. In elementary school, you start with white paper and use
pigments to subtract color values. Paper art normally works in a subtractive
color model (as does your computer printer). The monitor starts with blackness
and adds various amounts of colored light, so it evokes an additive color model.
While the approach is different, the result is the same.

If you want to specify a particular color in the computer world, you can specify
how much red, green, and blue (respectively) are used to make the color. It
would make sense then for red to be the color 100, 0, 0. This would mean “turn
on all the red, and turn off all the green and blue.”

However, computers don’t work as naturally with percentages as we do.
Computer organization works in a different way, so color values actually range
from 0 to 255. (Ack.) To make it even worse, technical people often convert
these numbers to base 16 (hexadecimal notation), which brings in all kinds of
crazy numbers and even letters. Each value (red, green, or blue) takes a two-
digit value that ranges from 00 (completely off) to FF (full brightness). This
funky system is called hexadecimal notation (often abbreviated hex).

Don’t panic. It’s not that hard. Look at the color tester program shown in Figure 5-5.

Feel free to look at the source code to see how it works. For now, use the pro-
gram to see how these hex values can be used to specify colors.

First, note how the page is arranged.

 ✓ The page background is black. The page background will change colors to
reflect the current color settings.

 ✓ There are three columns of buttons. There are columns for red, green,
and blue.

 ✓ Gray buttons directly set hex values. The gray buttons can be used to set
a color value to a specific setting. Brighter values (FF) are on the top of the
stack, with lower values (00) on the bottom.

07_9781118012529-ch05.indd 8307_9781118012529-ch05.indd 83 3/21/11 8:53 AM3/21/11 8:53 AM

84 Part 5: Formatting with CSS

Figure 5-5

 ✓ The current color is modified on the fly. As you click the various buttons,
the background color changes to reflect the current color, and the heading
changes to indicate the hex value of the current color.

 ✓ Gray buttons show preset values. Web developers often begin with preset
values in the ranges shown on the buttons (00, 33, 66, 99, CC, and FF). These
values provide a reasonable range of colors while being easy to modify.

 ✓ Black buttons allow finer tuning. Of course, you can use values besides
the presets. If you want to add a little more red, for example, you can use
the +10 button in the red column to do this.

You can use hex color values anywhere you use color names. For example, if you
want to specify that a heading level one is red text on a yellow background, you
can use these hex codes:

h1 {
 color: #FF0000;
 background-color: #FFFF00;
}

Use the pound sign (#) to indicate that you are using hex values rather than
color names. Hex values have a number of advantages over named colors.

 ✓ There are more of them. Only 16 named colors are officially recognized by
CSS (although most browsers can read many more). With the hex system,

07_9781118012529-ch05.indd 8407_9781118012529-ch05.indd 84 3/21/11 8:53 AM3/21/11 8:53 AM

Managing the Appearance of Your Page 85

you can actually represent more than 16 million different colors. Even if
you stick with the 00336699CCFF system, you have 216 colors to play with.

 ✓ Hex colors are easier to adjust. You can directly tweak the hex values to
get variations of the basic colors. If you want “a little more blue,” this is
much easier accomplished with hex colors than named colors.

 ✓ Hex colors are more universal. Most computer graphic programs use the
hex notation, so you can sample a color in your graphics editor and match
it in your Web page.

 ✓ Color scheme generators can help you match colors. If you have a design
disability (like I do), you can use a tool like the color scheme generator at
http://colorschemedesigner.com. This marvelous tool lets you play
around with various color schemes in real time, and then generates the
hex codes you can use in your own page.

 HTML5 now sports some alternate ways of handling color, including the new
HSB model and color with transparency. See Part 6 for more information on
these new developments.

Editing text

Web pages are primarily about text, and CSS has many great features for manip-
ulating text. Figure 5-6 shows a page with a number of text effects:

Figure 5-6

07_9781118012529-ch05.indd 8507_9781118012529-ch05.indd 85 3/21/11 8:53 AM3/21/11 8:53 AM

86 Part 5: Formatting with CSS

Text can be manipulated in a number of interesting ways. Look over the HTML
source of the textManipulation.html page to see the general overview.

<!DOCTYPE HTML>
<html lang = “en”>
 <head>
 <title>textManipulation.html</title>
 <meta charset = ”UTF-8” />
 <link rel = ”stylesheet”
 type = ”text/css”
 href = ”textManipulation.css” />
 </head>

 <body>

 <p>
 This paragraph uses the default style.
 </p>

 <p class = ”italic”>
 This paragraph is italicized.
 </p>

 <p class = ”bold”>
 This paragraph is bold-faced.
 </p>

 <p class = ”underline”>
 This paragraph is underlined.
 </p>

 <p class = ”strikeThrough”>
 This paragraph has strike-through text.
 </p>

 <p class = ”center”>
 This paragraph is centered.
 </p>

 <p class = ”right”>
 This paragraph is right-justified.
 </p>

 <p class = ”sans”>
 This paragraph uses a sans-serif font
 </p>

07_9781118012529-ch05.indd 8607_9781118012529-ch05.indd 86 3/21/11 8:53 AM3/21/11 8:53 AM

Managing the Appearance of Your Page 87

 <p class = ”big”>
 This paragraph uses a larger font.
 </p>

 <p class = ”center underline”>
 This paragraph is centered and underlined
 </p>
 </body>
</html>

There isn’t too much going on here because most of the work happens in the
CSS. Here are the things to notice:

 ✓ The page is mainly a series of paragraphs. There’s no real styling in the
HTML itself.

 ✓ Styles are indicated by class identifiers. Each paragraph has a class iden-
tifier to specify how it should be styled. You’ll find a corresponding class
definition in the style sheet.

 ✓ The page calls an external style sheet. The styles are handled by text-
Manipulation.css.

 ✓ One paragraph uses more than one style. The last paragraph actually
combines two classes. It calls both the center and underline classes.

The style sheet is where all the fun stuff happens. It uses a number of CSS rules
to clarify how the various paragraphs should be styled. Look at the overall code,
and then I break it down to show the details.

 .italic {
 font-style: italic;
 }

 .bold {
 font-weight: bold;
 }

 .underline {
 text-decoration: underline;
 }

 .strikeThrough {
 text-decoration: line-through;
 }

 .center {
 text-align: center;

07_9781118012529-ch05.indd 8707_9781118012529-ch05.indd 87 3/21/11 8:53 AM3/21/11 8:53 AM

88 Part 5: Formatting with CSS

 }

 .right {
 text-align: right;
 }

 .sans {
 font-family: sans-serif;
 }

 .big {
 font-size: 200%;
 }

You can see that I’ve defined a number of classes. The class names indicate the
various effects, and each class contains a single rule to generate that effect.

Here’s how all the various rules work:

 ✓ Setting the font style: You can set the overall font style with the font-
style attribute. Valid options for this rule are italic, normal, and
oblique (tipped backwards).

 ✓ Changing text weight: You can specify how much weight (boldness) to
apply to text with the font-weight attribute. The most common values
are bold and normal.

 ✓ Managing text-decoration: The text-decoration attribute can modify a
number of effects, but it is normally used to add a line to text. The most com-
monly used values are underline, overline, line-through, and none.

 ✓ Handling text alignment: Text alignment is normally controlled through
the (aptly named) text-align attribute. Most common values are
center, left, right, and justify. Note that this attribute is used to
align text inside an element only. If you want to center an entire element
(say a paragraph or table), look ahead to the margin attributes described
in the “Cleaning Up the Form” section later in this part.

 ✓ Managing fonts: You can specify a font to display with the font-family
attribute. This can be used to specify any font on your system, but users
will not be able to see these fonts if they aren’t installed. Part 6 explains
the wonderful new font techniques that overcome these problems.

 ✓ Changing font size: The size of your text can be specified with the font-
size attribute. This attribute can be measured in many ways, but the
safest approach for Web development is to specify percentage of the base
font. To make text twice as large as normal, set its font-size to 200%.
(You can use traditional measures like points, but they have less meaning
and reliability in the Web setting than in standard print application.)

07_9781118012529-ch05.indd 8807_9781118012529-ch05.indd 88 3/21/11 8:53 AM3/21/11 8:53 AM

Managing the Appearance of Your Page 89

Joining the border patrol

It’s possible to draw a border around an element. This is a potentially useful
design element, but it can also be very helpful when debugging a page layout.
There are three main border properties:

 ✓ border-width: Specifies the width of the border. This can use the stan-
dard CSS measurement schemes, but borders are usually measured in
pixels (px).

 ✓ border-color: Determines the color of the border. Border color is speci-
fied with a color name or hex value.

 ✓ border-style: Specifies a pattern for the border.

Figure 5-7 shows the possible border styles.

Figure 5-7

Generally, the various border attributes are combined into the single border
property, which allows you to specify width, style, and color all in one. For
example, to specify a 5-pixel blue double border on your paragraphs, you could
use the following code:

p {
 border: 5px double blue;
}

07_9781118012529-ch05.indd 8907_9781118012529-ch05.indd 89 3/21/11 8:53 AM3/21/11 8:53 AM

90 Part 5: Formatting with CSS

One more handy trick is to isolate the various parts of the border to get lines.
For example, you can specify border-top to draw a line above an element, and
border-right to draw to the right of the element. Each of these miniborders
can be given the same list of value as the standard border.

Putting in background images

You can add a background image to any element. The background attribute has
a slightly different format from some of the other elements you’ve seen so far.
Figure 5-8 illustrates a page with a background image.

Figure 5-8

Background images are added through CSS:

<!DOCTYPE HTML>
<html lang = “en”>
 <head>
 <title>backgroundImage.html</title>
 <meta charset = ”UTF-8” />
 <style type = ”text/css”>
 body {
 background-image: url(”ropeBG.jpg”);
 }
 h1 {
 background-image: url(”ropeBGLight.jpg”);

07_9781118012529-ch05.indd 9007_9781118012529-ch05.indd 90 3/21/11 8:53 AM3/21/11 8:53 AM

Managing the Appearance of Your Page 91

 }
 p {
 background-color: white;
 }
 </style>
 </head>

 <body>
 <h1>Using Background Images</h1>

 <p>
 The heading uses a lighter version of the background,
 and the paragraph uses a solid color background.
 The heading uses a lighter version of the background,
 and the paragraph uses a solid color background.
 The heading uses a lighter version of the background,
 and the paragraph uses a solid color background.
 </p>
 </body>
</html>

The key to adding background images is the background-image attribute.
Here’s how you use it:

 1. Identify the image you want to use. Choose a background image carefully.
Make sure the image supports the ideas you’re trying to communicate and
doesn’t distract from your message. Any of the standard Web formats
(png, gif, or jpg) are fine. You may want to adjust your image in an
editor (IrfanView and Gimp are excellent free options) to ensure it’s the
right size and resolution.

 2. Place the image in the same directory as your page. Although this step
isn’t absolutely necessary, it’s much easier to manage images if they are
physically close to your page. That way when you move the page to a
server, you can easily move the associated images as well.

 3. Build your page as normal. Create the XHTML code as you normally do.

 4. Add a background image to the body tag. This will apply an image to the
entire page. Of course, you can also apply images to any other element
you want.

 5. Specify the URL of your image. The value of the background image has a
unique syntax. You must specify that you’re invoking a URL, so if the
image is background.png, the value of the background-image attri-
bute will be url(“background.png”).

 6. Consider modifying the background. You can change the background
image by using a number of other CSS attributes: background-repeat

07_9781118012529-ch05.indd 9107_9781118012529-ch05.indd 91 3/21/11 8:53 AM3/21/11 8:53 AM

92 Part 5: Formatting with CSS

allows you to control how the background repeats, and background-
position lets you manipulate the position of the background.

 7. Test your page. Make sure your background image is not too distracting.

Background images can be problematic. Take a look at Figure 5-9 for an example
of this phenomenon:

Figure 5-9

Inappropriate background images are one of the most common beginner mis-
takes. Consider the number of Web pages you’ve seen that have unreadable text.

Most interesting photos have a lot of contrast. This is great for a picture that’s
meant to grab the user’s attention, but it’s a problem when the image is supposed
to be in the background. High contrast grabs the user’s attention, which is a prob-
lem when the user is trying to read text. There are a couple of standard solutions to
this problem. You can either provide lower-contrast versions of your background
images, or you can use plain colors as the background of elements that feature text.

If you look back at Figure 5-9, you’ll see that I use both of these tricks. The entire
page has the rope background (thanks to Julian Burgess for the great image),
but the title has a lighter version of the image — and the paragraphs use a solid
color background.

07_9781118012529-ch05.indd 9207_9781118012529-ch05.indd 92 3/21/11 8:53 AM3/21/11 8:53 AM

Managing the Appearance of Your Page — Using Float Positioning 93

You can create a lower-contrast version of an image using a tool like IrfanView.
(Use the adjust colors tool to make an extremely dark or extremely light version
of your image.) Use a darker background with lighter text, or a lighter back-
ground with darker text. Better yet, look to Part 6 for information on how to
make partially transparent backgrounds with CSS. This allows you to add a high-
contrast background that still allows you to see the underlying image.

Using Float Positioning
Page layout has long been one of the biggest weaknesses of HTML. Table-based
hacks used to be the best way to get a page to act correctly, but now CSS pro-
vides a number of useful tools for managing the position of elements.

Thefloating-position works by defining the relationships between elements rather
than specifying exactly where each element goes exactly. This can be a hard idea
to get your head around, but once you understand how floating positions work, it
is an extremely flexible and useful system.

Once you get the idea, you can use floating positions to set up a page that works
very well on a variety of browsers. As an example, think of a standard HTML/
XHTML form. Figure 5-10 shows a typical form with no CSS applied.

Figure 5-10

07_9781118012529-ch05.indd 9307_9781118012529-ch05.indd 93 3/21/11 8:53 AM3/21/11 8:53 AM

94 Part 5: Formatting with CSS

The form has all the necessary features, but it is ugly. Take a look at the HTML
code to see how it is formatted:

<!DOCTYPE HTML>
<html lang = “en”>
 <head>
 <title>formNoStyle.html</title>
 <meta charset = ”UTF-8” />
 </head>

 <body>
 <form action = “”>
 <fieldset>
 <label>Name</label>
 <input type = “text”
 id = “txtName” />
 <label>Address</label>
 <input type = “text”
 id = “txtAddress” />
 <label>Phone</label>
 <input type = “text”
 id = “txtPhone” />
 <button type = “button”>
 submit request
 </button>
 </fieldset>
 </form>
 </body>
</html>

There are a number of important features to note about this code:

 ✓ It supports a form. Form elements are critical in JavaScript coding, and
you’ll be building a lot of forms in your travels.

 ✓ The form has a fieldset container. Most of the form elements are
inline elements. (That is, they must exist inside a block element.) The
fieldset tag is a special block element designed to live in a form, so it’s a
perfect container for form elements.

 ✓ The form has a number of labels and inputs. Most forms have this gen-
eral structure: labels to indicate what the user is to enter, and input ele-
ments to accept the user input. Each row is typically a label/input pair.

 ✓ The label tag describes labels. This is a relatively new development in
HTML. The label tag doesn’t have any formatting associated with it, so it
was not used traditionally. With CSS, you can provide whatever format-
ting you want.

07_9781118012529-ch05.indd 9407_9781118012529-ch05.indd 94 3/21/11 8:53 AM3/21/11 8:53 AM

Using Float Positioning 95

 ✓ The last element is a button. Most forms include one or more buttons.
The real action happens when the user clicks a button. Because the button
will have different formatting than the input elements, I use the button tag
to describe it.

 ✓ No formatting is described in the HTML. The HTML code simply
describes the intention of the various elements, not their formatting. CSS
will handle that.

 ✓ The HTML is self-explanatory. You can tell what everything is just by look-
ing at the code. There’s no code here that isn’t directly related to the pur-
pose of the form.

 ✓ It’s kind of like a table. The general structure of the form looks a bit like a
table, but not quite. The goal of the CSS is to take this very clean data
structure and make it look visually like a table without having to muddy
the HTML code with actual table tags.

When you look at Figure 5-10 it’s clear that the browser is not displaying the
form in a way that’s acceptable. Typically, we want forms to look more like a
table. Of course, you can embed an HTML table into the code, but that’s a lot
more work (and complexity) than you need. CSS provides a simpler solution.

Getting to know the display types

To understand how to make a form display like a table, you need to understand
a little about how Web browsers manage page layout.

It takes very little CSS code to turn the form into a basic table-style format, but the
code can be mysterious. The secret has to do with the way HTML lays out pages.
Essentially, a Web browser can lay out Web elements in these three different ways:

 ✓ Inline: Place the element exactly where you would place the next charac-
ter of text.

 ✓ Block: The element is basically independent and gets its own line. Block
elements (like h1 tags and paragraphs) typically have line breaks before
and after themselves.

 ✓ Alternative: Some special CSS attributes remove elements from the normal
layout scheme (at least to some extent) and apply different placement rules
to them. The float attribute described in this section is one example.

All the HTML tags have their own default display mechanism (inline or block). You
can alter the way a tag is displayed by changing its display attribute. You can
also add an alternative placement scheme by changing other CSS attributes. That’s
how you can make a form look and act like a table without needing table tags.

07_9781118012529-ch05.indd 9507_9781118012529-ch05.indd 95 3/21/11 8:53 AM3/21/11 8:53 AM

96 Part 5: Formatting with CSS

Having a block party

The first step in adjusting this form to act like a table is to define some of the
elements as block-level using the display attribute.

Take a look at Figure 5-11 to see how this is done.

Figure 5-11

The HTML in formBlock.html is no different from the HTML in formNoStyle.
html. The only difference is the inclusion of an external stylesheet: formBlock.css.

The code for formBlock.css is pretty simple:

input {
 display: block;
}

button {
 display: block;
}

All the code does is specify that buttons and input elements (the text boxes)
should be block-level elements. This forces the page to a stacked look, but more
importantly, it sets the stage for a nicer layout.

 Note that I manually changed the text (using Ctrl-+) on all the screenshots in this
chapter to make them easier to read in the book. The CSS doesn’t change the
size of the text, but of course, you could use it to do this if you want.

07_9781118012529-ch05.indd 9607_9781118012529-ch05.indd 96 3/21/11 8:53 AM3/21/11 8:53 AM

Using Float Positioning 97

Floating to a two-column look

This is a starting place, but you really want the labels to be to the left of the cor-
responding block. The float attribute can be used to create exactly this effect,
as you can see in Figure 5-12.

Figure 5-12

The float attribute allows you to remove an element from the normal layout
rules and apply a special floating behavior. The float attribute describes the
relationship between an element and its neighbors. In this case, I tell each label
to float to the left. (You can also float to the right, but this is rarely done in prac-
tice.) This causes the label to be immediately to the left of the corresponding
input element. Adding a width to the floated label makes the input elements line
up nicely (looking and acting like a table with no additional HTML code).

Here’s the code for formTwoCol.css:

label {
 float: left;
 width: 30%;
}

input {
 display: block;
}

button {

07_9781118012529-ch05.indd 9707_9781118012529-ch05.indd 97 3/21/11 8:53 AM3/21/11 8:53 AM

98 Part 5: Formatting with CSS

 display: block;
}

Cleaning up the form

Of course, there’s a lot more you can do with the CSS to make things look better.
formFloat.html in Figure 5-13 shows a nicely-formatted form.

Figure 5-13

A few more CSS attributes are used to tweak the form’s appearance:

 ✓ margin: Describes what margin occurs outside the boundary of an ele-
ment. You can define all margins with the plain margin attribute, or you
can specify individual margins. (margin-left controls the left margin, for
example.) If you set the margin attribute to auto, you will center the ele-
ment horizontally. (There is no easy way to do vertical centering in CSS.)

 ✓ padding: Specifies the space between the content of an element and its
boundary. Padding is used to fix text that is crowded too close to a border.

 ✓ text alignment: Manipulates the content of an element (use the
margin attribute to center the element itself).

Take a look at the code for formFloat.css, and then I explain how it works:

fieldset {
 width: 80%;
 margin: auto;

07_9781118012529-ch05.indd 9807_9781118012529-ch05.indd 98 3/21/11 8:53 AM3/21/11 8:53 AM

Using Float Positioning 99

}

label {
 float: left;
 width: 30%;
 text-align: right;
 padding-right: 1em;
 margin-left: 15%;
}

input {
 display: block;
 width: 30%
}

button {
 display: block;
 margin: auto;
 margin-top: 1em;
}

This version of the CSS still works on exactly the same HTML as the previous
examples. It adds a few formatting attributes to clean up the page and get a bet-
ter-looking form. Here’s how to build this type of form layout:

 1. Begin with a two-column layout. Begin by building the simple two-column
layout described in the previous section.

 2. Center the fieldset. The fieldset is a block-level element by default, which
is what you want. Block-level elements typically take up 100% of their con-
tainer’s width, so if you want to center a fieldset (or any other block-level
element), you need to make it narrower and set the margin to auto.

 3. Right-justify the labels. I think it’s easier to enter data in a form if the label is
very close to the text box. For that reason, I usually right-justify the labels.
Set the labels’ text-align attribute to right to achieve this effect.

 4. Pad the labels a little bit. When text-align is set to right, the labels
seem to crowd the input elements a bit. Add a little bit of padding-
right to the labels to give them a little breathing space. (1em is the width
of the widest character in the current font.)

 5. “Center” the labels and input elements. You can’t exactly center the label
and input combination, as they’re two different elements on the same line.
However, you can use percentages to get the same effect. If the label and
input are both set at 30% width and the left margin of the label is 20%,
your label and input elements will be centered within the fieldset.

07_9781118012529-ch05.indd 9907_9781118012529-ch05.indd 99 3/21/11 8:53 AM3/21/11 8:53 AM

100 Part 5: Formatting with CSS

However, if you right-justify the labels (as I tend to do), the form looks
better if you drift it a little more to the left. I actually set the margin-
left of the label to 15% instead, because I think it looks better.

 6. Center the button. Although buttons can be created as HTML input ele-
ments, I tend to use the <button> tag instead. Buttons usually have dif-
ferent styles than input elements (because they don’t require labels), so
making them different HTML elements makes life easier. To center the
button, just set its display attribute to block and the margin to auto. I
find the button needs a little more vertical space, so I add a little margin-
top to make it look a little better.

Of course, you can do much more to make your forms look better. You can add
colors, background images, and custom fonts if you want. The important idea
here is to let CSS handle all the formatting so your pages can look good with the
cleanest possible HTML code. Separating the CSS from the HTML will make your
life a lot easier when you start writing JavaScript code to manipulate the page.

Using absolute positioning

CSS allows some other useful mechanisms for positioning elements. The abso-
lute positioning scheme is especially useful, as it allows you to have much more
precise control of the position of CSS elements. When you specify that an ele-
ment will use absolute positioning, you completely remove it from the normal
inline/block calculations, and you are expected to specify the exact position of
the object yourself.

 This makes the absolute positioning scheme very powerful, but often too
tedious for general layout. If you rely on absolute positioning to set up a page,
you generally have to use the technique for every element on the screen.
Absolute positioning techniques are best used for specialty objects that can
ignore the rest of the page layout scheme. I use it mainly for creating moving
objects that are animated with JavaScript.

Figure 5-14 shows an example of absolute positioning.

The bug shown in Figure 5-14 is sitting on top of the paragraph. This effect is
possible with absolute positioning.

When you use absolute positioning, you manually specify the position of the ele-
ment. Here’s the HTML for the absolute.html demonstration:

<!DOCTYPE HTML>
<html lang = “en”>
 <head>
 <title>absolute.html</title>
 <meta charset = “UTF-8” />
 <link rel = “stylesheet”
 type = “text/css”

07_9781118012529-ch05.indd 10007_9781118012529-ch05.indd 100 3/21/11 8:53 AM3/21/11 8:53 AM

Using Float Positioning 101

 href = “absolute.css” />
</head>

<body>
 <h1>Absolute Positioning Example</h1>
 <p>
 This page seems to have a bug in it!!!
 This page seems to have a bug in it!!!
 This page seems to have a bug in it!!!
 This page seems to have a bug in it!!!
 This page seems to have a bug in it!!!
 This page seems to have a bug in it!!!
 This page seems to have a bug in it!!!
 This page seems to have a bug in it!!!
 </p>

 <p id = “bug”>
 <img src = “bug.gif”
 alt = “bug picture” />
 </p>

</body>
</html>

Figure 5-14

07_9781118012529-ch05.indd 10107_9781118012529-ch05.indd 101 3/21/11 8:53 AM3/21/11 8:53 AM

102 Part 5: Formatting with CSS

This page contains an ordinary paragraph and a second paragraph named
“bug”. The bug paragraph contains only an image of a bug. Note that images are
inline-level tags, and they must be embedded within a block-level tag to make
the page validate. That’s why the image is inside another element, and it’s the
paragraph element that will be manipulated.

If there were no CSS, the page would simply display the bug image as its own
separate paragraph after the ordinary (text-laden) paragraph. However, the CSS
file changes things:

#bug {
 position: absolute;
 left: 100px;
 top: 50px;
}

The CSS changes the behavior of the element named bug in a few important ways:

 ✓ The position attribute is set to absolute. This means that the ordinary
layout mechanisms will be overruled by specific position information.

 ✓ The left attribute is set to 100 px (pixels). Once you’ve assigned absolute
positioning to an element, you’re committed to specifying its top and left
positions. Normally absolutely positioned elements are set using pixels (px).

 ✓ The top attribute is set to 50 px. This forces the object’s upper-left
corner to be (100, 50) pixels from the upper-left corner of the document.

 ✓ The element will obscure traditional elements. Anything placed with
absolute positioning will ignore previously positioned elements. This can
be a problem in ordinary Web design, but in animation, it can be a nice fea-
ture. (For example, you can make the bug fly around the screen with
JavaScript tricks.)

There is much more to CSS positioning than I can describe in this introductory
part. If you want to investigate CSS positioning in more detail, please check out
one of my other books: HTML, XHTML, and CSS All-in-One For Dummies, 2nd edi-
tion (Wiley). I have hundreds of pages in that book dedicated to explaining mul-
ticolumn layouts, drop-down menus, and other CSS goodness. Of course, you
can also check Part 6 for some wonderful new CSS capabilities, including an
entirely new layout mechanism.

07_9781118012529-ch05.indd 10207_9781118012529-ch05.indd 102 3/21/11 8:53 AM3/21/11 8:53 AM

New and Improved
CSS Elements
In addition to changes in HTML, there have been some striking new changes in
Cascading Style Sheets (CSS) technology. Now almost all of the page formatting,
style, and layout is performed by CSS. This part describes those features of CSS3
that are relatively new, are supported (or are expected to be supported), and
have a potential significant impact on the Web. As you work with these CSS ele-
ments, you’ll notice that many of them are not fully implemented. The major ren-
dering engines have created vendor-specific test versions of many of these tags:

 ✓ -webkit-: This indicates a test version of the attribute optimized for
browsers based on the WebKit rendering engine. This includes Safari,
Chrome, and the iPhone browsers.

 ✓ -o-: This prefix stands for the Opera browser. It’s not used very often
because Opera tends to either support an attribute completely or not at
all. The Opera rendering engine is (naturally enough) used in the Opera
browser. You’ll also see versions of the Opera browser on many portable
devices.

 ✓ -moz-: The -moz- prefix is used for test versions of an attribute optimized
for the Mozilla rendering engine. This is primarily Firefox, but a number of
other Mozilla-based browsers are starting to appear.

 IE8 supports almost none of the features described in this part. IE9 promises
fuller support for HTML5 standards (and hopefully support for CSS3).

As always, be sure to check out my Web site for working examples of every code
fragment in the book: www.aharrisbooks.net/h5qr.

In this part . . .

✓ Introducing New CSS3 Selection Tools

✓ Taking a Look at Font and Text Support

✓ Examining the Flexible Box Layout Model

✓ Previewing New Visual Elements

Part 6

08_9781118012529-ch06.indd 10308_9781118012529-ch06.indd 103 3/21/11 9:39 AM3/21/11 9:39 AM

104 Part 6: New and Improved CSS Elements

CSS3’s New Selection Tools
One key element of CSS is the way a developer can select parts of the page for
markup. Traditional CSS has allowed selection by tag type (p to select all para-
graphs, for example), by class (.fancy indicates a style applied to all elements
with the fancy class), or by id (#sidebar indicates a style that will be applied
to an element with the sidebar id).

CSS3 supports several new selectors with interesting new capabilities.

Attribute selection

You can now apply a style to any element with a specific attribute value. For exam-
ple, the input tag takes many different forms, all determined by the type attribute.
If you apply a single style to the input element, that style is applied to many differ-
ent kinds of elements: check boxes, text fields, and radio buttons. By using the new
attribute syntax, you can apply a style to any particular type of input element:

 input[type=”text”]{
 background-color: #CCCCFF;
 }

You can apply the style with or without a tag type, but it’s possible to have
unexpected side effects if you choose an extremely common attribute.

not

There are times you want an inverse selection. For example, imagine you wanted
to apply a style to all the paragraphs that are not members of the special class:

 p:not(.special) {
 border: 1px solid red;
 }

The given code will apply the solid red border to any paragraph that does not
have the special class assigned.

nth-child

The nth-child selector allows you to select one or more elements in a group.
The basic version uses a numeric input:

 #myList>li:nth-child(1){
 border: 1px solid blue;
 }

This allows you to apply a style to the first of a group of elements. In my exam-
ple, I have a list with four items. The style is applied to the list items, not the list.

08_9781118012529-ch06.indd 10408_9781118012529-ch06.indd 104 3/21/11 8:54 AM3/21/11 8:54 AM

CSS3’s New Selection Tools 105

(It seems to me that the list items are children of the list, so it should be the nth-
child of the list — but nobody asked me.)

The numeric value can actually be a formula, like an+b. If you love algebra (and
who doesn’t?), you can select all the even-numbered elements like this:

 #myList>li:nth-child(2n){
 border: 1px solid blue;
 }

A similar formula can be used to pick the odd-numbered children:

 #myList>li:nth-child(2n+1){
 border: 1px solid blue;
 }

You could use this formula system to get all kinds of groupings (every third ele-
ment with 3n, for example), but most people simply need a particular element, or
all the even or odd rows. CSS3 supplies shortcut keywords — even and odd — so
you don’t have to do it using math:

 #myList>li:nth-child(even){
 color: white;
 background-color: red;
 }

The last keyword allows you to pick the last element from a group. There are a
few more variations of this selection technique:

 ✓ :nth-last-child(N): Works just like nth-child, except it counts from
the end of the group of elements rather than the beginning.

 ✓ :nth-of-type(N): This selector works just like nth-child, except it fil-
ters to a specific type and ignores any elements that are not of exactly the
same type of element.

 ✓ last-child: This (naturally enough) selects the last child element.

 ✓ last-nth-of-type(N): Works like nth-of-type, but from the end of
the group.

 ✓ first-child: Grabs the first element. (Technically, this was available in
CSS2, but it was rarely used.)

 These selection tools are fully supported in all the recent browsers except IE.
IE9 supports these tools, but older versions do not. However, as they are gener-
ally used simply to improve readability, it should be safe to use them. Non-
compliant browsers will simply skip the style.

08_9781118012529-ch06.indd 10508_9781118012529-ch06.indd 105 3/21/11 8:54 AM3/21/11 8:54 AM

106 Part 6: New and Improved CSS Elements

Other new pseudo-classes

Pseudo-classes allow you to specify styles based on the state of an element.
Modern CSS supports a number of new pseudo-classes:

 ✓ :hover: The :hover pseudo-class has been a part of CSS from the begin-
ning, but it was officially defined only for the <a> tag. Now the :hover
pseudo-class can be applied to any element. If the mouse (or other point-
ing device) is over an element, that element has the hover state activated.

 Note that mobile devices don’t always support hover, because the position
of the pointing device (the stylus or finger) isn’t known until the item is
activated. Mobile devices may have some sort of tabbing mechanism to
indicate which item is being “hovered” over.

 ✓ :focus: This pseudo-class is activated when an element is ready to
receive keyboard input.

 ✓ :active: A form element is active when it’s currently being used. For
example, when a button has been pressed but not yet released.

 Mobile devices often skip directly to active mode without going through
hover mode. This can be an important design consideration when using
state for styling.

The state pseudo-classes are fully supported by all modern browsers except the
IE family of browsers. There is limited (but buggy support) in early versions of IE.

Downloadable Fonts and Text Support
Font support has always been one of the biggest weaknesses of the HTML/CSS
model. Although a Web developer can suggest any font for a Web page, the font
files are traditionally a client-level asset — if the client doesn’t have the font
installed, she won’t see it. Developers had to rely on a series of substitute fonts
and fallbacks. Finally, CSS3 now supports a sensible solution for providing
downloadable fonts.

@font-face
The @font-face style does not work like most CSS elements. It doesn’t apply
markup to some part of the page. Instead, it defines a new CSS value that can be
used in other markup. Specifically, it allows you to place a font file on your
server and define a font family using that font.

 @font-face {
 font-family: “Miama”;
 src: url(“Miama.otf”);
 }

08_9781118012529-ch06.indd 10608_9781118012529-ch06.indd 106 3/21/11 8:54 AM3/21/11 8:54 AM

CSS3’s New Selection Tools — Downloadable Fonts and Text Support 107

The font-family attribute indicates the name you will be giving this font in
the rest of your CSS code. Typically, it’s similar to the font filename, but this
isn’t required. The src attribute is the URL of the actual font file as it is found
on the server. Once a font face has been defined, it can be used in an ordinary
font-family attribute in the rest of your CSS code:

 h1 {
 font-family: Miama;
 }

While all modern browsers support the @font-face feature, the actual file
types supported vary from browser to browser. Here are the primary font types:

 ✓ TTF: The standard TrueType format (TTF) is well-supported, but not by all
browsers. Many open source fonts are available in this format.

 ✓ OTF: Similar to TTF, but it’s a truly open standard and, as a result, is pre-
ferred by those who are interested in open standards. OTF (OpenType) is
supported by most browsers except IE.

 ✓ WOFF: A proposed standard format currently supported by Firefox.
Microsoft has hinted at supporting WOFF (Web Open Font Format) in IE9.

 ✓ EOT: Microsoft’s proprietary embedded font format. EOT (Embedded
OpenType) works only in IE, but to be fair, Microsoft has had embedded
font support for many years.

 You can use a font conversion tool like the free Online Font Converter (http://
onlinefontconverter.com) to convert to whatever font format you prefer.

It’s possible to supply multiple src attributes. This way, you can include both an
EOT and OTF version of a font so that it will work on a wide variety of browsers.

 Just because you can include a font doesn’t mean you should. Think carefully
about readability. Also, be respectful of intellectual property. There are many
excellent free open source fonts available. Begin by looking at http://
openfontlibrary.org.

Column support

Web developers have been looking for column support since the early days of
HTML. Many approaches have been used over the years, including frames,
tables, and floating elements. Finally, CSS3 has now integrated column support.

 #main{
 column-count: 3;
 column-gap: 2em;
 column-rule: 5px double red;

 -webkit-column-count: 3;

08_9781118012529-ch06.indd 10708_9781118012529-ch06.indd 107 3/21/11 8:54 AM3/21/11 8:54 AM

108 Part 6: New and Improved CSS Elements

 -webkit-column-gap: 2em;
 -webkit-column-rule: 5px double red;

 -moz-column-count: 3;
 -moz-column-gap: 2em;
 -moz-column-rule: 5px double red;

 } // end main

Three new rules govern columns:

 ✓ column-count: Indicates the number of columns.

 ✓ column-gap: The space between columns using standard CSS
measurements.

 ✓ column-rule: The vertical line (if any) between the columns. This rule is
defined with exactly the same parameters as the border rule.

 Promising as the column system looks, it has a few problems:

 ✓ It isn’t supported. The standard column rules are not yet supported by any
major browsers. However, two of the main engines have their own variations
of the column tags. Incorporate the -moz- versions of the tag for Firefox and
related browsers. The -webkit- versions support Safari and Chrome.

 ✓ Column width is automatic. You can either set all columns to the same
width (in which case the number of columns is automatically determined) or
you can set the number of columns (which automatically determines a width
for each). You cannot make one column a different size from the others.

 ✓ Text flow is automatic. Content fills up the entire area, automatically flow-
ing from one column to the next. There is no easy way to specify which
text is in which column.

It’s tempting to consider use of the column CSS attributes as a page layout tech-
nique, but this doesn’t seem to be a practical consideration yet. Also, since
there is no support for columns in IE or Opera, it’s still necessary to consider
other more universal page layout techniques. (For one interesting new option,
see “Flexible Box Layout Model” later in this part.)

Columns are more suited for magazine-style layout with text flowing among
columns.

text-stroke

You can change the appearance of your fonts in another new way. With CSS3,
you can specify a stroke color for your text. This defines an outline around the
letter. You can specify the stroke color (using any of the standard CSS color
values) as well as a stroke width (using the normal size attributes).

08_9781118012529-ch06.indd 10808_9781118012529-ch06.indd 108 3/21/11 8:54 AM3/21/11 8:54 AM

Downloadable Fonts and Text Support 109

 h2 {
 color: yellow;
 -webkit-text-stroke: 2px red;
 font-size: 300%;
 }

Currently, no browsers support the text-stroke attribute directly, but
WebKit-based browsers (Chrome and Safari) support the vendor-specific
-webkit- version.

text-shadow

Shadows are another common feature of modern Web designs. Shadows add an
element of depth to a page, but they can also enhance readability (if used prop-
erly) to lift a headline from the page. The text-shadow attribute was techni-
cally part of CSS2, but it has only recently been supported by major browsers:

 h2 {
 font-size: 300%;
 text-shadow: 3px 3px 5px #666666;
 }

The text-shadow attribute has four parameters:

 ✓ offset-x: Determines how far in the x-axis (left-right) the shadow will be
from the original text. A positive value moves the shadow to the right, and
a negative value moves to the left.

 ✓ offset-y: Indicates how far in the y-axis (up-down) the shadow will be
from the original text. A positive value moves the shadow down, and a neg-
ative value moves the shadow up

 ✓ blur: Specifies the blur radius of the shadow. If the value is 0px, there is no
blur, and the shadow looks just like the original text. Generally, you’ll want
the blur equivalent to the longest of your offsets. This allows the shadow to
be recognizable as a shadow of the text without becoming a distraction.

 ✓ color: Defines the shadow color. Generally, a dark gray is the standard
shadow color, but you can also try other colors for special effects. Note
that blurring tends to lighten the shadow color. If there’s a great deal of
blur applied, the shadow color can be the same color as the text. If the
shadow will not be blurred much, you may need to lighten the shadow
color for readability.

The size of the shadow is determined indirectly with a combination of offsets
and blurs. You may have to experiment to get the shadow you’re looking for.

A special case of text shadowing can be used to help text stand out against a
background image. Apply a small shadow of a contrasting color.

08_9781118012529-ch06.indd 10908_9781118012529-ch06.indd 109 3/21/11 8:54 AM3/21/11 8:54 AM

110 Part 6: New and Improved CSS Elements

All late-model browsers except IE support the text-shadow feature. No special
prefixes are necessary.

Flexible Box Layout Model
Page layout has been a constant concern in Web development. There have been
many different approaches to page layout, and all have weaknesses. The current
standard is the floating mechanism. While this works quite well, it has two major
weaknesses:

 ✓ It can be hard to understand. The various parts of the float specification
can be difficult to follow, and the behavior is not intuitive. The relationship
between width, clear, and float attributes can be difficult to follow.

 ✓ The page order matters. One goal of semantic layout is to completely
divorce the way the page is created from how it is displayed. With the float-
ing layout, the order in which various elements are written in the HTML
document influences how they are placed. An ideal layout solution would
allow any kind of placement through CSS, even after the HTML is finished.

While the floating mechanism is the current standard for page layout, clearly
another option would be nice. CSS3 includes the new flexible box layout as an
alternative.

Creating a flexible box layout

CSS3 proposes a new layout mechanism, flexible box. While it is far from com-
plete, this mechanism shows significant promise. Here’s essentially how it
works. (I’m deliberately leaving out details here for clarity; see “Viewing a flexi-
ble box layout” later in this part.)

 1. Designate a page segment as a box. The display attribute of most ele-
ments can be set to various types. CSS3 introduces a new display type:
box. Setting the display of an element to box makes it capable of holding
other elements with the flexible box mechanism.

 2. Determine the orientation of child elements. Use a new attribute called
box-orient to determine if the child elements of the current element
will be placed vertically or horizontally inside the main element.

 3. Specify the weight of child elements. Each child element can be given a
numeric weight. The weight determines how much space that element
takes up. If the weight is zero, the element takes as little space as possible.
If the weight of all the elements is one, they all take up the same amount
of space. If one element has a weight of two and the others all have a
weight of one, the larger element has twice the size of the others, and so
on. Weight is determined through the box-flex attribute.

08_9781118012529-ch06.indd 11008_9781118012529-ch06.indd 110 3/21/11 8:54 AM3/21/11 8:54 AM

Downloadable Fonts and Text Support — Flexible Box Layout Model 111

 4. Nest another box inside the first. You can nest flex boxes inside each
other. Simply apply the box display type to inner elements, which will
show the display.

 5. Modify the order in which elements appear. Normally, elements will
appear in the order in which they were placed on the page, but you can
use the box-ordinal-group attribute to adjust the placement order.

Viewing a flexible box layout

As an example of the new layout mechanism (see “Creating a flexible box layout”
earlier in this part), take a look at the following HTML code:

 <div id = “a”>
 <div id = “b”>b</div>
 <div id = “c”>c</div>
 <div id = “d”>
 <div id = “e”>e</div>
 <div id = „f“>f</div>
 </div>
 </div>

While this is a clearly made-up example, it shows a complex structure that could
be difficult to style using standard layout techniques. Figure 6-1 illustrates a
complex nested style that would be difficult to achieve through traditional
layout techniques (for example, CSS2).

Figure 6-1

08_9781118012529-ch06.indd 11108_9781118012529-ch06.indd 111 3/21/11 8:54 AM3/21/11 8:54 AM

112 Part 6: New and Improved CSS Elements

The following example style sheet is used to apply a floating style to this page:

 div {
 border: 1px solid black;
 }

 #a {
 width: 300px;
 height: 200px;

 box-orient: horizontal;
 display: box;

 }

 #b {
 box-flex: 1;
 }

 #c {
 box-flex: 1;
 }

 #d {
 display: box;
 box-orient: vertical;
 box-flex: 2;
 }

 #e {
 box-flex: 1;
 box-ordinal-group: 2;
 }

 #f {
 box-flex: 1;
 }

The CSS looks complex, but there are only four new CSS elements. Here’s how
this specific example works:

 1. Set up a to be the primary container. The a div is the primary container, so
give it a height and width. It will contain flex boxes, so set the display attri-
bute to box. Determine how you want the children of this box to be lined up
by setting the box-orient attribute to vertical or horizontal.

08_9781118012529-ch06.indd 11208_9781118012529-ch06.indd 112 3/21/11 8:54 AM3/21/11 8:54 AM

Flexible Box Layout Model 113

 2. Specify the weights of b, c, and d. In my example style sheet here, I want
elements b and c to take up half the space, and d to fill up the remainder
of the space. To get this behavior, set the box-flex value of c and d to 1,
and the box-flex value of d to 2.

 3. Set up d as another container. The d element will contain e and f. Use
display: box to make d a flex container, and set box-orient to ver-
tical to make the elements line up vertically. (Normally, nested ele-
ments will switch between horizontal and vertical.)

 4. Elements e and f should each take half of d. Use the box-flex attribute
to give these elements equal weight.

 5. Change the ordinal group of e so it appears after f. The box-ordinal-
group attribute indicates the order in which an element will be displayed
inside its group. Normally, all items have a default value of 1, so they
appear in the order they are written. You can demote an element by set-
ting its box-ordinal-group value to a higher number, causing that ele-
ment to be displayed later than normal. I set e to ordinal group 2, so it is
displayed after element f.

. . . And now for a little reality

The flex box system seems perfect. It’s much more sensible than the Byzantine
layout techniques that are currently in use. However, the flexible box system is not
ready for common use yet. Right now, not a single browser implements the flex
box attributes directly. However, there are special vendor-specific versions avail-
able. WebKit-based browsers (primarily Safari and Chrome) use variations that
begin with -webkit-, and Gecko-based browsers (Firefox and Mozilla) use the
-moz- extension. To make the example in this part work in modern browsers, you
need to include both -webkit- and -moz- versions of all the attributes, like this:

 #a {
 width: 300px;
 height: 200px;

 -moz-box-orient: horizontal;
 display: -moz-box;

 -webkit-box-orient: horizontal;
 display: -webkit-box;
 }

 #b {
 -moz-box-flex: 1;
 -webkit-box-flex: 1;
 }

08_9781118012529-ch06.indd 11308_9781118012529-ch06.indd 113 3/21/11 8:54 AM3/21/11 8:54 AM

114 Part 6: New and Improved CSS Elements

At the moment, no version of IE supports the flex box model, but preliminary
versions of IE9 do support the model. Surprisingly, Opera does not yet support
this mechanism. Regardless, it looks like this could become an important layout
technique, particularly on mobile devices that already include compliant
browsers.

Some browsers have problems with multiple levels of nesting, but this is
expected to be resolved. This technique is worth learning about, as it may well
become the preferred layout technique in the future. See the file flexTwoCol.
html on my Web site (www.aharrisbooks.net/h5qr) for an example of a
standard two-column page using the flex box technique.

New Visual Elements
A large number of visual enhancements are available in upcoming versions of
CSS. While none of them are essential, they add tremendous new options for
developers.

Color values

CSS3 includes new ways of thinking about colors.

CSS3 also supports a new form of color representation that also incorporates
transparency. You can now define a color in the RGBA format:

 h1 {
 color: rgba(0, 0, 0, .3);
 }

This format uses four numeric values. The first three are for red (r), green (g),
and blue (b), respectively. Use standard 0–255 values to indicate the color you
want. The fourth value (a) stands for alpha, which is another term for transpar-
ency. The alpha value is a real number between 0 (completely transparent) and
1 (completely opaque).

CSS3 also supports the flexible HSL color model. HSL stands for hue, saturation,
and lightness. While the RGB model reflects the way colors are represented on
the computer monitor, the HSL model is closer to the way most artists and
designers actually work with colors. An HSL color requires three parameters:

 ✓ hue: An angle around the color wheel. Red is value 0 and 360, and the visi-
ble spectrum is wrapped around a circle. Use a value between 0 and 360
for hue. See the tool at http://colorschemedesigner.com for an
example of a color wheel.

08_9781118012529-ch06.indd 11408_9781118012529-ch06.indd 114 3/21/11 8:54 AM3/21/11 8:54 AM

Flexible Box Layout Model — New Visual Elements 115

 ✓ saturation: Refers to the distance from gray, black, or white. A color with
0% saturation is gray, black, or white (depending on the lightness). A color
with 100% saturation is the brightest form of the hue color. Saturation
values are integers between 0 and 100 followed by a percent sign.

 ✓ lightness: Makes the color lighter or darker than the base color. Any
color with 0% lightness will be black, and any color with 100% lightness
will be white. Lightness values are integers between 0 and 100 followed by
a percent sign.

You can assign an HSL color anywhere you can use colors:

 background: hsl(0, 0%, 50%);

Colors can’t be appreciated in a black-and-white book. Look at hsl.html on the
Web site for this book (www.aharrisbooks.net/h5qr/hsl.html). It is an
interactive example of the HSL color model. Change the values of hue, satura-
tion, and lightness, and see a color sample change colors on the fly.

 The HSL model is not exactly the same as the HSV model (hue, saturation, and
value) often used in graphics programs (although they are similar). Both models
use hue and saturation in essentially the same way. The value in HSV ranges
from black to full saturation, where lightness in HSL ranges from black to
white. Also, note that the term luminance is often used in color theory, but the L
in HSL is not about luminance (which is a technical measurement of light
energy) but about lightness.

CSS3 includes one more color model, HSLA. As you might guess, it is the HSL
model with an alpha channel. The alpha channel indicates the level of transpar-
ency; an alpha channel with a value of 0 is fully transparent, and 1 is fully opaque.

 background: hsla(0, 0%, 50%, 0.7);

Gradients

A gradient is a sequence of colors. Simple gradients flow from a foreground to a
background color, but gradients can contain many other colors. There are also
multiple types of gradients. The most common are linear (which flows in a
straight line from one color to another) or radial (where one color is concentrated
at a specific point, and the other colors are visible farther from that point).

Gradients have been used for some time in Web development as a nice way to
add color. The primary way to handle gradients has been to build a thin gradi-
ent strip in an image editor and apply that image to the background-image
attribute of an element.

Figure 6-2 illustrates the gradients described in this section.

08_9781118012529-ch06.indd 11508_9781118012529-ch06.indd 115 3/21/11 8:54 AM3/21/11 8:54 AM

116 Part 6: New and Improved CSS Elements

Figure 6-2

CSS3 suggests a structure to build gradients directly in the browser. These gen-
erated gradients can be used anywhere an image can be used (commonly as a
background image).

Unfortunately, a standard syntax for the gradient has not yet been determined.
The Mozilla and WebKit engines have differing approaches to the attribute. The
Mozilla version is a bit easier to follow:

 background-image:
 -moz-linear-gradient(left, blue, white);

Here’s how you attach a Mozilla-style gradient to the background of an element:

 1. Begin with an image attribute. The gradient isn’t a stand-alone attribute. It
is meant to be a replacement for an image. Use the gradient attribute
wherever you would use an image.

 2. Use the -moz-linear-gradient attribute. Mozilla uses different attri-
butes for linear and radial gradients.

 3. Specify the direction of the gradient. This gradient will go from left to
right, so I specify left. (You can also specify a pixel value or percentage,
but the special ‘left’ keyword is easy to remember.)

 4. Indicate starting and ending colors. My gradient starts as blue and ends as
white.

08_9781118012529-ch06.indd 11608_9781118012529-ch06.indd 116 3/21/11 8:54 AM3/21/11 8:54 AM

New Visual Elements 117

The WebKit-based browsers (Chrome, Safari, and iPhone) use a completely dif-
ferent syntax:

 background-image:
 -webkit-gradient(
 linear,
 left center, right center,
 from(blue),
 to(white)
);

The parameters are familiar, but slightly different from the Mozilla variant.

 1. Attach the gradient to an image. The gradient does not stand on its own,
but must be used where you would use an image.

 2. Specify the gradient type. WebKit uses a single attribute for both gradient
types. The first parameter indicates which type of gradient (linear in this
example) will be created.

 3. Indicate the beginning and ending position of the gradient. You can indi-
cate how the gradient will flow. The value left center, right
center tells the gradient to move from left to right; a left top, right
bottom value would create a diagonal gradient, and so on.

 4. Specify starting and ending colors. The from() and to() parameters are
an easy way to create a two-color gradient. Each parameter accepts a
color value. The gradient will always begin at the from value and end at
the to value.

 5. Add color-stops if you want. Between the from and to color, you can add
as many color-stop elements as you want. Each color-stop takes two
parameters: a percentage (0–1) and a color. The indicated color will
appear at the percentage of the gradient indicated by the percentage.

Radial gradients are very similar to the linear variety. Again, the WebKit and
Mozilla engines have different syntax. Here’s the Mozilla-style radial gradient:

 background-image:
 -moz-radial-gradient(white, blue);

It’s a pretty simple syntax. Simply list the colors you want to display from inside
to outside.

The WebKit version is more complex:

 background-image:
 -webkit-gradient(
 radial,

08_9781118012529-ch06.indd 11708_9781118012529-ch06.indd 117 3/21/11 8:54 AM3/21/11 8:54 AM

118 Part 6: New and Improved CSS Elements

 center center, 0,
 center center, 100,
 from(white),
 to(blue)
);

In the WebKit model, linear and radial gradients use the same attribute with dif-
ferent parameters:

 1. Make the gradient an image. As usual, the gradient does not appear on its
own, but is part of an image element, usually background-image.

 2. Set the gradient type to radial. The first parameter of the -webkit-
gradient attribute is the type.

 3. Determine the center and radius of the first color. Generally, the first
color will be a point in the center. The value center center, 0 indi-
cates a value at the center of the element with a radius of zero.

 4. Determine the center and radius of the second color. The second color
will be the outer color. It will also generally be centered on the center of
the element, but it will usually have a larger radius.

 5. Specify starting and ending colors. Describe which colors will be displayed.

It is not clear which version will become the standard. (If you’re a member of
the W3C and you’re asking me, I vote for the Mozilla model.)

Image borders

CSS 3 allows you to use an image for an element border. The mechanism is quite
powerful, as it detects the edges of an image and slices it to create the edges
and corners of the border from the edges and corners of the image.

For example, look at the simple picture frame image in Figure 6-3.

The frame image is stored as frame.png in the same directory as the HTML file.
It has a transparent center. Apply the following code to add an image border
around all h2 elements on the page:

 h2 {
 border-width: 15px;
 border-image: url(“frame.png”) 25% repeat;
 -webkit-border-image: url(“frame.png”) 25% repeat;
 -moz-border-image: url(“frame.png”) 25% repeat;
 }

08_9781118012529-ch06.indd 11808_9781118012529-ch06.indd 118 3/21/11 8:54 AM3/21/11 8:54 AM

New Visual Elements 119

Figure 6-3

Here’s how you add a border image:

 1. Acquire your image. The image should already be designed as some sort
of border. Typically, it will be a shape around the edges, with either a
solid-color center or a transparent center. I usually make the image 100 ×
100 pixels, so the math is easier to figure later.

 2. Specify the border width. You’ll need to indicate the border width directly.
The border of the frame image will be scaled to fit whatever size you want.

 3. Calculate how much of the image’s border you want. I want to use the outer
25% of my frame image as the border, so I specify 25%. If you leave off the
percent sign, the value will calculate in pixels. You can add four values if
you prefer to use different amounts of the original image for each boundary.

 4. Indicate the behavior you want. The original image will almost never be the
same size as the element you’re wanting to surround, so you can supply a
tip to explain how the browser should handle elements larger than the orig-
inal. The most common choices are repeat (repeat the original image) or
stretch (stretch the image to take up the entire space). With a simple
image like frame.png used in this example, the results will be the same.

Reflections

Reflection is another one of those visual elements that adds quite a bit to a page
when done well. CSS3 promises to handle reflections using only CSS. Currently,

08_9781118012529-ch06.indd 11908_9781118012529-ch06.indd 119 3/21/11 8:54 AM3/21/11 8:54 AM

120 Part 6: New and Improved CSS Elements

only the WebKit-based browsers (that is, Safari, Mobile Safari, and Chrome) sup-
port this capability. However, it shows such promise that some form of this
capability is likely to appear in the other browsers at some point. Apply the fol-
lowing CSS to make any element with the reflect class have a nice-looking
reflection in the supported browsers:

-webkit-box-reflect: below 2px;

Basic reflections are quite simple:

 1. Apply the -webkit-box-reflect attribute. Unfortunately, there is no
generic version, nor has the reflect attribute been duplicated by other
browsers.

 2. Specify where the reflection is to be placed. Normally, the reflection goes
beneath (below) the primary element, but it can also be above, left, or
right.

 3. Indicate a gap width. The reflection can be placed right next to the origi-
nal element, but often it looks better with a small gap. The gap is normally
measured in pixels.

This will produce a very nice reflection.

However, reflections aren’t usually pixel-perfect duplications. They tend to fade
out over distance. WebKit allows you to add a gradient to a reflection. In this
case, the gradient will go from completely opaque (white) to completely trans-
parent (transparent.) The webkit gradient model is a bit complex. (See
“Gradients” earlier in this part for more details.) You can usually just use a vari-
ation of the gradient I supply in this example:

 .reflect {
 -webkit-box-reflect: below 2px
 -webkit-gradient(
 linear,
 center top, center bottom,
 from(transparent),
 color-stop(.6, transparent),
 to(white));
 }

The standard part of the reflection is just like the previous example, but it
includes a gradient that will fade the reflection to transparency.

 1. Build a linear gradient. The gradient for a reflection will nearly always be
linear.

 2. Make the gradient move from top to bottom. Use “center top” to indi-
cate the top, and “center bottom” to indicate the bottom. These values

08_9781118012529-ch06.indd 12008_9781118012529-ch06.indd 120 3/21/11 8:54 AM3/21/11 8:54 AM

New Visual Elements 121

represent the top and bottom of the original image, not the reflection
(which will, of course, be reversed.)

 3. Begin with complete transparency. The top of the original image will be the
bottom of the reflection, so begin with transparency. (Set transparent as
the from color.)

 4. Finish at complete opacity. This gradient isn’t really about color, but
about which parts of the reflection are visible. The bottom of the original
image (which will be the top of the reflection) will be completely opaque.
Set the to color to white to indicate opacity.

 5. Add a color-stop to adjust the fade. The color-stop parameter allows
you to add a new color. Add a color-stop to indicate where in the reflec-
tion you want the image to begin appearing. I set a second transparent
color at 60%, so only the bottom 40% (or so) of the original image appears
as the reflection.

 Note that the reflected image is not calculated as a separate element for page
layout purposes, so text and other content will flow right on top of your reflection.

Figure 6-4 shows a reflected image.

 Reflections are commonly applied to images, but they can be applied to any ele-
ment, even video!

Figure 6-4

08_9781118012529-ch06.indd 12108_9781118012529-ch06.indd 121 3/21/11 8:54 AM3/21/11 8:54 AM

122 Part 6: New and Improved CSS Elements

Rounded corners
Rounded corners have become a symbol of Web 3.0 design. It was quite difficult
to create cross-platform round corners in previous versions of CSS, but CSS3
makes this quite easy.

The following CSS makes a nice-looking blue heading:

 h1 {
 width: 60%;
 background-color: #000066;
 color: #9999ff;
 border: #9999ff 3px groove;
 margin: auto;
 text-align: center;
 border-radius: 10px;
 }

Almost all of the code is garden-variety CSS2. The one new element is the border-
radius attribute. This attribute allows you to specify a rounding parameter for
the corners. Each corner will be replaced by a small arc. The rounding parameter
determines the radius of that arc. A value of 1em will lead to perfectly round ends
for one-line elements (like most headers and links). A value of .5em will create a
button shape like the ones common in most operating systems.

 Although the attribute is called border-radius, it does not require a border to
be defined.

Note that there are variations of each tag to support specific corners: border-
top-left-radius and so on. This can be useful if you do not want to apply the
same radius to all four corners of your element.

This attribute is not supported in its default format in any major browsers.
However, all the major browsers except IE have vendor-specific variants. Use
-moz-border-radius, -webkit-border-radius, or -o-border-radius to
get a rounded corner in any of these browsers.

Shadows

You can add a shadow to any element with the box-shadow attribute. This tool
works much like the text-shadow attribute. (See “Downloadable Fonts and
Text Support” earlier in this part.) The following code adds an attractive drop
shadow to a div containing the class shadow:

 .shadow {
 box-shadow: 10px 10px 10px #000000;
 -moz-box-shadow: 10px 10px 10px #000000;
 -webkit-box-shadow: 10px 10px 10px #000000;
 }

08_9781118012529-ch06.indd 12208_9781118012529-ch06.indd 122 3/21/11 8:54 AM3/21/11 8:54 AM

New Visual Elements 123

Figure 6-5 illustrates this drop shadow.

Figure 6-5

The shadow attribute takes four parameters:

 ✓ x-offset: This determines how far the shadow is offset from the main
element in the x (left-right) axis. Positive values move the shadow to the
right; negative values move the shadow to the left.

 ✓ y-offset: This determines how far the shadow is offset from the main
element in the y (up-down) axis. Positive values move the shadow down-
ward, and negative values move the shadow up.

 ✓ cast-length: This indicates the level of blur of the shadow. A larger value
makes the shadow more blurry. A smaller value casts a sharper shadow.

 ✓ color: The final parameter is the shadow color. Normally this is black or
gray, but you can use other colors to add interesting features.

Like many other CSS3 elements, support for the standard version of box-
shadow is spotty (only Opera supports it directly) but vendor-specific variants
are available for browsers based on WebKit and Mozilla.

Generally all the shadows on a page should have the same general characteris-
tics. It’s most efficient to create a shadow class and add this class to all ele-
ments that will have a shadow.

08_9781118012529-ch06.indd 12308_9781118012529-ch06.indd 123 3/21/11 8:54 AM3/21/11 8:54 AM

124 Part 6: New and Improved CSS Elements

If the original image has rounded corners (see the border-radius attribute in
the “Rounded corners” section, earlier in this part, for details on how to achieve
this effect), the shadow will also have rounded corners.

See the example in the “text-shadow” section, earlier in this part, for information
on adding shadows to text elements.

Transformations

CSS3 includes the ability to apply geometric transformations onto any element.
This provides a remarkable level of visual control not previously available to
Web developers.

The transform attribute allows you to apply a mathematical transformation to
any div. When you apply transform to an element, you need to apply one or
more of the following parameters to describe the type of transformation:

 ✓ translate: Moves the object from its default position. Translation
requires two parameters, an X measurement and a Y measurement. Use
the standard CSS measurement units.

 ✓ rotate: Rotates the image around its center value and takes one parame-
ter, an angle measurement in degrees. (for example 30 degrees is 30deg.)

 ✓ scale: Changes the size of the object. The standard version changes both
the horizontal and vertical size uniformly. The scalex and scaley attri-
butes can be used to adjust the scale along an individual axis. Scale is mea-
sured in the standard CSS measurement units. If scale is larger than 1, the
object is larger than the original. A scale between zero and one makes the
item smaller than it was. Zero or negative scale values are not defined.

 ✓ skew: This allows you to tilt the element by some angle. The skew parame-
ter requires an angle measurement in degrees. The skewx and skewy vari-
ations allow for more complete control of the transformation.

You can combine multiple parameters by listing them after the transform attri-
bute separated by spaces.

To illustrate, imagine the following HTML snippet:

 <div id = “box1”>box 1</div>
 <div id = “box2”>box 2</div>
 <div id = “box3”>box 3</div>
 <div id = “box4”>box 4</div>
 <div id = “box5”>box 5</div>

The code shows five identical divs. For illustration purposes, all the divs share
the same common CSS:

08_9781118012529-ch06.indd 12408_9781118012529-ch06.indd 124 3/21/11 8:54 AM3/21/11 8:54 AM

New Visual Elements 125

 #box1, #box2, #box3, #box4, #box5{
 width: 100px;
 height: 80px;
 border: 3px solid black;
 background-color: yellow;
 }

Apply variations of the transform attribute to each element to see how the
transformations work:

 #box2 {
 transform: translate(100px, 0px);
 }
 #box3 {
 transform: rotate(45deg);
 }
 #box4 {
 transform: scale(2) translate(100px, 0px);
 }
 #box5 {
 transform: skew(3);
 }

This code is illustrated in Figure 6-6.

Figure 6-6

08_9781118012529-ch06.indd 12508_9781118012529-ch06.indd 125 3/21/11 8:54 AM3/21/11 8:54 AM

126 Part 6: New and Improved CSS Elements

Note that none of the current browsers support the transform element as
stated in the specifications. However, all of the major browsers except IE have a
vendor-specific version, so the actual code for box 2 looks like this:

 #box2 {
 transform: translate(100px, 0px);
 -webkit-transform: translate(100px, 0px);
 -moz-transform: translate(100px, 0px);
 -o-transform: translate(100px, 0px);
 }

Transition animation

It’s already possible to change CSS properties on the fly through pseudo-classes
(like hover) or with JavaScript code. Prior to CSS3, all CSS state changes hap-
pened instantly. With the new transition attribute, you can cause transitions
to happen over time.

Look at a simple h1 heading:

 <h1>Transition Demo</h1>

The CSS code is mainly quite straightforward:

 h1 {
 color: black
 font-size: 300%;
 transition:color 1s ease-in;
 }

 h1:hover {
 color: red;
 }

Begin by ignoring the transition attribute. If you look at the rest of the code,
it’s easy to see what it does. In the normal state, the heading is black. In the
hover state, the color is red. Typically, the heading will turn red as soon as the
mouse hovers over it, and will instantly turn black when the mouse leaves.
However, when the transition attribute is added, the color change is not imme-
diate, but takes a second. The color gradually changes from black to red and back.

Transitions are even more interesting when you pair them with transformations.
Imagine a very simple div:

 <div id = “box”>Box 1</div>

08_9781118012529-ch06.indd 12608_9781118012529-ch06.indd 126 3/21/11 8:54 AM3/21/11 8:54 AM

New Visual Elements 127

Apply a little CSS3 magic and when the user hovers over the div, it rotates
smoothly until it is upside-down. When the user leaves the div, it smoothly
rotates back to its original position:

 #box {
 transition: all 1s ease-in;
 height: 100px;
 width: 100px;
 border: 1px solid black;
 }

 #box:hover {
 transform: rotate(180deg);
 }

The transform is defined in the :hover pseudo-class. The only new element is
the transition specified in the class’s standard style.

The transition attribute takes several parameters:

 ✓ animation property: The type of animation defined by this tag. The
default value is all, but other types are expected to work, including
color, length, width, percentage, opacity, and number.

 If in doubt, use the standard all.

 ✓ duration: The length of the animation in seconds. One second is 1s.

 ✓ timing function: If you want the animation to occur at a constant
speed, use linear. If you want a more natural motion that gradually
speeds up and slows down at the ends of the animation, use one of the fol-
lowing: ease, ease-in, ease-out, ease-in-out.

 ✓ delay: If you include a second time value, this will be considered a delay.
The animation will not begin until after the delay.

If you prefer, you can use individual properties for the various parts of the ani-
mation, but most developers prefer the one-line shortcut (like the one used for
borders).

Not all CSS attributes can be animated, but many can be. It may require some
experimentation to determine which CSS attribute can be animated with the
transition attribute.

Unfortunately, the stock transition attribute is not currently supported by
any major browsers, but there are vendor-specific versions for Mozilla (-moz-),
WebKit (-webkit-), and Opera (-o-). Sadly, there does not appear to be any
support for any version of IE yet. Your best bet until support is widespread is to
include all vendor-specific versions in addition to the standard version.

08_9781118012529-ch06.indd 12708_9781118012529-ch06.indd 127 3/21/11 8:54 AM3/21/11 8:54 AM

128 Part 6: New and Improved CSS Elements

Transparency

CSS3 has complete support for adjustable opacity. This is reflected in a couple
of ways. First, any element has an opacity attribute that can be set from 0
(fully transparent) to 1 (fully opaque.)

Figure 6-7 shows a div with partial transparency superimposed on an image.

The CSS for this effect is quite simple:

 #box {
 position: absolute;
 top: 350px;
 left: 100px;
 height: 100px;
 width: 100px;
 border: 1px solid red;
 background-color: white;
 opacity: .3;
 }

All of the code is common CSS2 stuff, except the last attribute. The opacity
attribute takes a single floating point value between 0 and 1. A value of 0 is com-
pletely transparent, and a value of 1 is completely opaque.

Figure 6-7

08_9781118012529-ch06.indd 12808_9781118012529-ch06.indd 128 3/21/11 8:54 AM3/21/11 8:54 AM

Changes in JavaScript
There are many new features in HTML5, but the biggest change is really in the
way that Web pages are used. The Web is no longer simply about hosting docu-
ments, but it is becoming an application-development framework. Some of the
most interesting and potentially far-reaching innovations in HTML5 are in the
new additions to JavaScript available in modern browsers.

JavaScript has emerged as a critical technology for modern Web applications,
and every browser has improved the performance of the JavaScript engine in
recent years. In addition, a number of fascinating new extensions to the
JavaScript language are becoming available.

This part focuses on those aspects of JavaScript that are especially intriguing
and new. I assume you have some familiarity with computer programming and
the JavaScript language. If you need a refresher, please check my book titled
JavaScript & AJAX For Dummies (Wiley).

 Be sure to check out my Web site for working examples of every code fragment
in the book: www.aharrisbooks.net/h5qr.

In this part . . .

✓ Examining New Selection Options

✓ Previewing Data Options

✓ Taking a Look at Miscellaneous New JavaScript Features

Part 7

09_9781118012529-ch07.indd 12909_9781118012529-ch07.indd 129 3/21/11 9:39 AM3/21/11 9:39 AM

130 Part 7: Changes in JavaScript

Behold: The New JavaScript Selection Options
JavaScript is usually used to interact with the Web page. Generally, the program-
mer uses the document.getElementById() method to create a variable
based on a page element. This mechanism requires the element to have an id
attribute. HTML5 incorporates some new ways to select elements from the page.

document.getElementsByClassName()

Sometimes you’ll want to apply code to all elements in a particular class. The
getElementsByClassName() function returns an array of all the elements in a
particular class. For example, look at the following code:

 function init(){
 specP = document.getElementsByClassName(“special”);
 alert(specP.length);
 for(i = 0; i < specP.length; i++){
 alert(specP[i].innerHTML);
 } // end for
 } // end function

This routine creates an array of all of the elements on the current page with the
class special. It then steps through each element of that array and alerts the
content of that element.

Note that getElementsByClassName() does not return a single element like
getElementById(). Instead, it returns an array. Generally, you’ll use a for
loop to step through the array and do something to each element.

The class does not need to have any CSS associated with it. This can be an easy
way to mark a set of elements you’ll want to do something with.

document.getElementsByTagName()

The getElementsByTagName() method allows you to quickly retrieve all the
elements with a given tag name. For example, you could use this mechanism to get
access to all of the input elements of a form. Like getElementsByClassName(),
this method returns an array of values (even if there is only one match). You will
need to use array syntax (usually with a for loop) to work with the members of the
array. The following code alerts the content of every paragraph of the current page:

 function init(){
 paras = document.getElementsByTagName(“p”);
 for(i = 0; i < paras.length; i++){
 alert(paras[i].innerHTML);
 } // end for
 } // end function

09_9781118012529-ch07.indd 13009_9781118012529-ch07.indd 130 3/21/11 8:54 AM3/21/11 8:54 AM

Behold: The New JavaScript Selection Options — Data Options 131

document.querySelector()

A number of JavaScript libraries (notably jQuery) have added the ability to
select DOM elements through the same syntax used to define elements in CSS.
JavaScript now includes this capability natively through the querySelector()
method. This extremely powerful mechanism makes it very easy to select any ele-
ment. For example, the following code selects the second paragraph on the page:

 para2 = document.querySelector(“p + p”);
 alert(para2.innerHTML);

 Note that this method retrieves only the first element that matches the query. If
the query might match more than one element, use the document.query-
SelctorAll() method instead. The querySelector() method can also be
used to select elements by tag name, class, or id.

document.querySelectorAll()

The document.querySelectorAll() method works just like document.
querySelector(), except it retrieves all elements of the page that match the
given query. The following function asks for a CSS selector and displays the con-
tents of any page elements matched by that selector:

 function init(){
 paras = document.getElementsByTagName(“p”);
 alert(specP.length);
 for(i = 0; i < paras.length; i++){
 alert(paras[i].innerHTML);
 } // end for
 } // end function

The querySelectorAll() method returns an array of elements, even if only a
single element is returned. Use array syntax (normally with a for loop) to step
through each element of the array.

Data Options
Client-side applications (including JavaScript programs) are typically prevented
from storing data on the local machine. This is a good thing because it prevents
a Web developer from writing malicious code and installing it on your machine.
However, this restriction has made it much more difficult to create applications
in the browser.

Developers have used server-side solutions (session variables in PHP, persistent
data, and so on.) However, the only way to store data on the client has been the
cookie mechanism. Cookies are useful, but they are very limited (they allow only

09_9781118012529-ch07.indd 13109_9781118012529-ch07.indd 131 3/21/11 8:54 AM3/21/11 8:54 AM

132 Part 7: Changes in JavaScript

4K of data) – and they are also quite inefficient. (The data is actually passed as
part of the HTTP header, and it’s passed to the server on every refresh.)

Now that the Web browser is becoming an application platform, it’s important to
have more robust storage mechanisms that are still safe for the user. There are a
couple of very interesting capabilities built into the modern batch of browsers.

Achieving offline cache

Web-based applications are an increasingly important type of application, but
they have at least one major problem: Most Web-based applications will work
only if you’re online. This seems obvious, but it would be nice to have a mecha-
nism for forcing part of a Web page and its resources to be stored on the local
machine so that it can be viewed while offline. Of course, many browsers have a
save page functionality, but the idea is to have a page identify itself for this
behavior and attempt to save a copy on the local machine automatically. The
offline cache mechanism serves exactly this purpose. Imagine a page like this:

<!DOCTYPE HTML>
<html lang = “en”
 manifest = ”cache.manifest”>
<head>
 <title>offline.html</title>
 <meta charset = ”UTF-8” />
 <link rel = ”stylesheet”
 type = ”text/css”
 href = ”offline.css” />
 <script type = ”text/javascript”
 src = ”offline.js”>
 </script>
</head>

<body onload = ”setCaption()”>
 <h1>Offline Storage Demo</h1>

 <div>
 <img src = “pot.jpg”
 alt = ”hand-etched pottery” />
 <p id = ”caption”></p>
 </div>

</body>
</html>

While extremely simple, this page manages to draw resources from several dif-
ferent files. Of course, it requires the image pot.jpg, but it also uses an exter-
nal JavaScript file (offline.js) and an external style sheet (offline.css).

09_9781118012529-ch07.indd 13209_9781118012529-ch07.indd 132 3/21/11 8:54 AM3/21/11 8:54 AM

Data Options 133

HTML5 offers a mechanism that allows the browser to automatically save not
only the HTML file, but all the other resources it needs to display properly.

 I generally wouldn’t build such a simple page with so many external dependen-
cies, but that’s the point of this particular exercise.

The secret is in a special file called cache.manifest. This special file is simply
a text file that indicates which other files are needed by the page. Here’s the
content of cache.manifest for this particular example:

CACHE MANIFEST
offline.css
offline.js
pot.jpg

The file must begin with the phrase CACHE MANIFEST (all in capital letters).
Each subsequent line should contain the name of a file needed to complete the
page. It’s easiest if all the files are in the same directory, but relative references
are acceptable.

Here’s how you set up a page for offline cache:

 1. Set up your server to manage caches. The cache mechanism uses the
text/manifest MIME type. Your server may not yet be set up for this
type of data. If you’re using Apache, this is easy to fix. Look for (or create)
a text file called .htaccess in the root directory of your Web server. Add
the following line to this file:

AddType text/cache-manifest .manifest

 If you do not have permission to add or modify .htaccess or you are
using another server, you might have to ask your server administrator to
add this MIME type.

 2. Create your manifest file. Build a text file called cache.manifest in the
same directory as your project. Make the first line read CACHE MANIFEST.
On each subsequent line, list one of the assets your page will need. You
may need to look through your source code to find the various elements
(normally images, CSS, and JavaScript files) that your page will need.

 3. Build the page in the normal way. Build your page as you normally do.
Keep track of any external resources you might need.

 4. Add the manifest attribute to the <html> tag. Indicate that your page will
request local storage by adding this attribute and a link to your cache.
manifest file.

 5. Load your page. Obviously, you cannot test cache on a local machine
(unless you’re running your own Web server and test through the
http://localhost address). You’ll need to load your files to a server.
The first time you try to access the page, your browser will probably ask
permission to save data locally. Grant permission to do so.

09_9781118012529-ch07.indd 13309_9781118012529-ch07.indd 133 3/21/11 8:54 AM3/21/11 8:54 AM

134 Part 7: Changes in JavaScript

 6. Test offline. To see if the page works, disconnect from the Internet (by
turning off your wireless or unplugging your network cable). Try to load
the page again. If you are successful, the entire page including all of its
components will load.

 Browsers already have a form of cache which automatically stores pages the
user has visited, but the type of cache we’re building here is a different, more
intentional form of cache.

Note that you can’t put links to server-side assets in the cache. A local cache
can’t store a PHP program or database. However, you can use other local stor-
age mechanisms described in this section to store any data you need on the
client so your project will still work without a server connection.

If you make changes to your cache.manifest file and retest, the browser will
not update immediately. That’s because browsers are set to keep the current
cache for a couple of hours. If you test again after a couple of hours, you will see
the changes reflected. During testing, you can turn the automatic browser cach-
ing off by adding these lines to your .htaccess file:

ExpiresActive On
ExpiresDefault “access”

It only makes sense to turn off browser caching on a test server. Leave the cach-
ing behavior at its default level for a production server.

 If one of the files changes but the cache.manifest file does not, the browser
will not know to reload the changed file. If you want to trigger a complete file
reload, you need to change at least one character in the cache.manifest file.
This can be a comment, so you can just add a version number like this:

#version 3

Changing the version number will trigger the reload mechanism the next time
you’re online, so the offline version will be up to date.

Local storage

The local storage mechanism is a nice replacement for cookies. It allows a pro-
grammer to write up to 5MB of data to a special file on the client. This file is not
executable and cannot hold binary data (only strings), so it’s reasonably safe.

All the pages that come from your domain share the same storage area, so you
can use this mechanism to keep data persistent between multiple pages. The
data also stays on the client machine (until you remove it), so it can be used to
keep track of information over time.

The localStorage attribute is an example of a very simple (but powerful) type
of data structure called a dictionary. Each piece of data is stored in a key/value
pair. The key identifies the name of the information (say ‘firstName’), and the

09_9781118012529-ch07.indd 13409_9781118012529-ch07.indd 134 3/21/11 8:54 AM3/21/11 8:54 AM

Data Options 135

value is the value associated with that key (‘Herbert’). You’ve already used dic-
tionaries many times as a Web developer. HTML attributes are dictionaries (in
, href is the key, and http://
www.google.com is the value). CSS rules are also dictionaries. (In the style rule
color: red;, color is the key, and red is the value.) Some programming lan-
guages use different names for dictionaries, including associative arrays and
hash tables.

Access to the local storage is through a special built-in object called
localStorage(). This class has a relatively small number of methods, but
they are extremely powerful and easy to use:

 ✓ localStorage.setItem(key, value): Stores a value associated with
a key. Essentially, key is like a variable name, and value is the value asso-
ciated with that key. You can store any type of value you want, but it will
be stored as string data.

 ✓ localStorage.getItem(key): Retrieves the value associated with the
key. Again, you can think of the key as a variable name. Note that this
method always returns a string value, so you might need to convert the
data to another type. (See the counter demonstration later in this section
for an example.) If the key does not exist, you will get the special value
null.

 ✓ localStorage.removeItem(key): Removes an item from storage. The
key and the value will both be removed. This can be useful if you are run-
ning out of space. You are allotted only 5MB of space, and once it’s full,
nothing else can be added.

 ✓ localStorage.length: Returns the number of key/value pairs in the
database. Usually used in a loop with the key() method to work with
every key/value pair.

 ✓ localStorage.key(i): Given an integer i, this method finds the corre-
sponding key. Note that the order of the keys is not guaranteed. Normally,
this method is used in a loop to retrieve all the keys in the database. Then
each key is used to look up the corresponding value. See later in this part
for an example that pulls all keys and values from localStorage.

 ✓ localStorage.clear(): Clears all key/value pairs from localStorage.
This is a potentially destructive command, so think carefully before you
use it. By definition, localStorage data is not backed up on the server
(or anywhere else). Once it’s gone, it’s really gone.

Here’s a code snippet that stores and retrieves the user’s name:

 function greet(){
 name = localStorage.getItem(“name”);
 if (name == null || name == “null”){

09_9781118012529-ch07.indd 13509_9781118012529-ch07.indd 135 3/21/11 8:54 AM3/21/11 8:54 AM

136 Part 7: Changes in JavaScript

 alert(“Hi, Stranger!”);
 name = prompt(“What is your name?”);
 localStorage.setItem(“name”, name);
 } else {
 alert (“Hi, “ + name + “!”);
 } // end greet
 } // end function

The process is pretty simple:

 1. Retrieve the value. Generally, you’ll create a variable with the same name
as the key. Try to extract the value from the localStorage object with
the getItem() method. Retrieving the data is like checking out a book
from the library.

 2. Determine if the value exists. If the key does not exist, the value will be
null. If that’s the case, do something to add a value. (I prompted the user
for a name.) Note that some browsers look for the value “null” (a string
value) and some actually use the keyword null (no quotes, because it’s a
key word). I use the special operator || (or) to check for either possibility.

 3. Modify the variable. Your code will likely modify the variable. (In this
case, I added a new name from a user prompt.)

 4. Store the value back in the database. The localStorage database is sep-
arated from your variables. It’s up to you to update any data you want to
keep. Use the setItem() method to save data. This is like returning a
book to the library.

If you’re working with numeric data, you’ll need to remember that localStorage
stores everything as a string. It’s no problem to store a numeric value in local
Storage, but when you retrieve it, you’ll need to convert the value back to a
numeric value (with parseInt() or parseFloat()) to the data type you need.
Here’s an example that counts the number of times a user has visited your site:

 function countVisits(){
 str_count = localStorage.getItem(“count”);
 //get a numeric value from str_count, put it in count
 if (str_count == null || str_count == “null”){
 count = 0;
 } else {
 count = parseInt(str_count);
 } // end if

 //increment count
 count++;

 //display count

09_9781118012529-ch07.indd 13609_9781118012529-ch07.indd 136 3/21/11 8:54 AM3/21/11 8:54 AM

Data Options 137

 lblCounter = document.getElementById(“lblCounter”);
 lblCounter.innerHTML = “You have been here “ + count + “
times”;

 //store count
 localStorage.setItem(“count”, count);
 } // end count

This code would need to be run every time the page is loaded (perhaps with the
<body onload> attribute). It works much like the name code, but it involves
basic numeric conversions:

 1. Attempt to get the count from localStore. Note that I’m storing the
counter in a string variable. (JavaScript doesn’t require you to specify
what type of variable you are using, but they are still different.) I use the
str_ prefix to help myself remember that the data is currently a string.

 2. Ensure that the value exists. If there is no entry in the database for count,
this must be the first time the user is here (or they have cleared the data-
base). In either case, assign the value 0 to count (which is a numeric
variable).

 3. If str_count exists, convert it to an integer. Use the parseInt()
method to convert the string str_count into the integer count.

 4. Add one to count. Now that count is an integer, you can add to it.

 5. Display the counter value to the user. Of course, this is not absolutely
necessary, but it is nice to provide some sort of feedback.

 6. Store count back to the localStorage database. Note that you can
store the integer count to the database with no problems. It will be qui-
etly converted to a string when it is stored.

It’s possible (and easy) to clear any or all of the data. Use the locaStorage.
clear() method to clear all of the data associated with your Web site, or the
localStorage.removeItem(key) method to remove a particular key/value pair.

 function clearValues(){
 alert(“clearing “ + name + “ from the database...”);
 localStorage.removeItem(“name”);
 localStorage.removeItem(“count”);
 //to clear all values at once, you can use this:
 //localStorage.clear();

 //clean up display

 lblCounter = document.getElementById(“lblCounter”);

09_9781118012529-ch07.indd 13709_9781118012529-ch07.indd 137 3/21/11 8:54 AM3/21/11 8:54 AM

138 Part 7: Changes in JavaScript

 lblCounter.innerHTML = “You have been here 0 times”;

 }

Sometimes, you’ll want to step through all the data in the database. This is actu-
ally pretty easy to do with the length property and the keys() method. Look
over this example:

 function viewData(){
 //shows all the key / value pairs

 for (i = 0; i < localStorage.length; i++){
 key = localStorage.key(i);
 value = localStorage.getItem(key);
 alert(key + “: “ + value);
 } // end for loop

 } // end viewData

The process involves creating a for loop to step through all the key/value pairs:

 1. Build a for loop to step through the data. Use the localStorage.
length property to determine how many times you’ll need to step
through the loop.

 2. Find the next key. Use the loop counter (in my case i) to get the next key
with localStorage.key(i). Note that the order of the keys will not be
predictable.

 3. Retrieve the value associated with that key. Use the standard
localStorage.getItem() method with the key you’ve just retrieved.

 4. Use the key and value. At this point, you have a variable called key con-
taining the current key, and another called value containing the value
associated with that key. You can then print out the data to the page or
do whatever else you want with it.

If you try to store more than 5MB of data from the same domain, JavaScript will
throw a “QUOTA_EXCEEDED_ERR” exception. There is currently no way to
change the amount of storage allowed, even with the user’s permission.

Amazingly enough, the local storage mechanism works very well on all current
browsers, even Internet Explorer.

Of course, any time a Web page can write data to the client machine, there is
some concern for privacy and safety. However, the data is stored on the client
machine, so it is never transmitted to the server (unlike cookie data). The data
is stored on the client machine and belongs to the client. The 5MB limit gives a
fair amount of space to Web applications, but even if it is filled, it won’t clog up

09_9781118012529-ch07.indd 13809_9781118012529-ch07.indd 138 3/21/11 8:54 AM3/21/11 8:54 AM

Data Options 139

modern machines. Finally, the data is stored in a plain-text format, and it can’t
be put in a separate file — so it would be difficult to use this technology to
create viruses and other troublesome code pests.

 It may seem limiting to store data in these simple name/value pairs, but you can
actually store very complex data using this mechanism. The value can be any
type, including the very rich XML and JSON data storage mechanisms. See a
book like JavaScript & AJAX For Dummies for help on using these more advanced
data structures.

WebSQL database

The localStorage mechanism is powerful and easy to use, but most high-end
data applications use the relational database model. Typically, the client program
connects to a program on the Web server, which then connects to a relational data-
base program like MySQL or Oracle. The server-side program creates a request in a
special data language called SQL (Structured Query Language). The results of the
query are returned to the server, which then sends results back to the client.

If you’re interested in more about this model, please see my book HTML, XHTML,
and CSS All-in-One For Dummies (Wiley). In that book, I explain exactly how to set
up this type of a system using the PHP programming language and the MySQL
database package.HTML5 introduces a radical new model. The browser actually
includes its own database program (based on the popular SQLite engine) and a
programmer can build and manage a database directly on the client!

The following SQL code builds a simple database table called contact and adds
three values to the table:

DROP TABLE IF EXISTS contact;
CREATE TABLE IF NOT EXISTS contact (id, name, email);
INSERT INTO contact VALUES(1, ‘Andy’,’andy@aharrisbooks.
net’);
INSERT INTO contact VALUES(1, ‘Bill’, ‘bgates@msBob.com’);
INSERT INTO contact VALUES(1, ‘Steve’, ‘sJobs@newton.com’);

 The SQL language is powerful and complex. (It deserves a book in its own right.)
webSQL features are practical to experiment with only if you’re already familiar
with standard SQL.

If you want to experiment with the form of SQL used in webSQL, you should look
into SQLite (www.sqlite.org). This popular database engine is available in
many forms. You can download a native version for your platform, or you can
use the SQLite manager extension for Firefox. Also, recent versions of Chrome
have a database console available. (Right-click anywhere on the page and
choose Inspect Element.) The developer tools dialog will appear, and you can
use the Storage tab to see any locally-defined databases. If you have a database
defined in your page, you can type SQL commands into the console to manage
and update the database manually.

09_9781118012529-ch07.indd 13909_9781118012529-ch07.indd 139 3/21/11 8:54 AM3/21/11 8:54 AM

140 Part 7: Changes in JavaScript

Creating a WebSQL database

It’s not terribly difficult to create and manage a database through SQL. The first
step is to open the database:

var db = openDatabase(
 ‘contactDB’,
 ‘1.0’,
 ‘Contact DB’,
 2 * 1024 * 1024);

This powerful command opens a database on the client. It has a number of
important parts, including the following:

 ✓ Db handle (db): The openDatabase command will attempt to open a
database. It will return a special database object on success, or null on
failure. The database object (db in this example) will be used in subse-
quent database actions.

 ✓ Database name (contactDB): The first parameter is a database name.
This will be used internally (for example, browser developer tools) to rep-
resent the database.

 ✓ Version number: This is a place to keep track of the version number of
your database. As you change your data structure, you should keep track
of version numbers. This will help you manage data as the structure
changes. (If possible, you want to avoid changing the data structure after
the database is populated.)

 ✓ Display name: This name might be used to display output tables of the
data (although it doesn’t seem to be used for anything yet).

 ✓ Storage size in bytes: The last parameter indicates the amount of storage
space you want to allocate for the database. Normally, you’ll want to think
in megabytes, so 2MB = 2 × 1024 × 1024. (Remember, 1024 × 1024 bytes is
1MB.)

Once you’ve created a database, you can start manipulating it. webSQL uses a
mechanism called transactions to handle database commands cleanly.
Essentially, a series of SQL commands are expressed together in a bundle called
a transaction. The init() method of my example (automatically called with
<body onload>) runs two transactions:

 function init(){
 db.transaction(makeContact);
 db.transaction(getContacts);
 } // end init

The transaction method of the db object takes a function as its single param-
eter. Each of these functions (makeContact and getContacts) are described

09_9781118012529-ch07.indd 14009_9781118012529-ch07.indd 140 3/21/11 8:54 AM3/21/11 8:54 AM

Data Options 141

in detail in the next two sections in this part. It’s up to the programmer to create
the functions to handle the transactions.

 Most (virtually all) online examples of WebSQL use an advanced JavaScript tech-
nique called anonymous callback functions. A callback function is a function that
will be called at some point during another process. In general, when a callback
function is required, you can either present the name of an existing function (as
a variable name, with no parameters) or you can create the function you need
directly in place.

If you create the function in place, you are building an anonymous function. I am
not a fan of anonymous functions, particularly for beginners, because they make
the code much harder to read. Usually, you are creating an entire function
inside a parameter list, making the indentation and bracket notation notoriously
confusing. Even though I’m pretty good at anonymous functions, I stay away
from them to make my code easier to read and manage.

For that reason, I will not use anonymous functions in the example that follows.
Instead, I use a number of standard functions using the callback mechanism.
Feel free to use anonymous functions if you’re comfortable with them.

Making the contact database

The contact database itself is created through the makeContact function. The
db.transaction() method calls the makeContact function. Once the trans-
action has been created, the browser looks for a function named makeContact.
Transaction functions are expected to have a single parameter containing a ref-
erence to the transaction itself. The transaction object is almost always called
tx. Here’s the code for the complete makeContact() function:

function makeContact(tx){
tx.executeSql(“DROP TABLE IF EXISTS contact”);
tx.executeSql(“CREATE TABLE IF NOT EXISTS contact
 (id, name, email)”);
tx.executeSql(
 “INSERT INTO contact VALUES(1, ‘Andy’,
 ‘andy@aharris- books.net’)”);
tx.executeSql(
 “INSERT INTO contact VALUES(2, ‘Bill’,
‘bgates@msBob. com’)”);
tx.executeSql(
 “INSERT INTO contact VALUES(3, ‘Steve’,
 ‘sJobs@newton. com’)”);
} // end makeContact

Creating the actual database table uses an important method of the transaction
object called executeSql(). This method accepts an SQL command and
passes it to the database.

09_9781118012529-ch07.indd 14109_9781118012529-ch07.indd 141 3/21/11 8:54 AM3/21/11 8:54 AM

142 Part 7: Changes in JavaScript

The code is simply a set of tx.executeSql() calls with the various SQL com-
mands for building and populating the database embedded. Each line of SQL is
passed to the executeSql() command.

If you’re using Chrome, you can check the contents of the database with the
developer console (right-click on the page, choose Inspect Element, click on the
Resources tab, and choose Databases).

There’s a variant of the executeSql() function that allows you to pass param-
eters to your requests. For example, this variant passes the variables id, name,
and email to the database:

tx.executeSql(“INSERT INTO contact VALUES(?, ?, ?)”,
[id, name, email], null, null);

For more information on this four-parameter version of the executeSql()
method, please read the next section on retrieving output.

Perusing the output of the database

Of course, if you can put data into a database, you’ll eventually want to get it
out. The general technique is similar. Recall that the init() function has the
following line:

 db.transaction(getContacts);

This code sets up a second transaction, which is activated by the getCon-
tacts() function. This function also uses the tx.executeSql() command,
but in a slightly different way:

 function getContacts(tx) {
 tx.executeSql(‘SELECT * FROM contact’,
 [],
 showData,
 null);
 } // end getContacts

The function is technically only one line long, but that line packs a lot. (In fact, I
simplified it quite a bit: It’s often a lot more convoluted yet.) The getContacts()
function uses a different variation of executeSql() that accepts four parameters:

 ✓ Query: The first parameter is an SQL query. Since the goal of this particular
command is to extract data from the database, I use a SELECT query.
Queries can become much more complex, but they still all work in about
the same way.

 ✓ Parameters: You can place an array of string values (enclosed in square
braces) to fill in parameters if your query has question mark symbols in it.
This works much like a stored procedure in traditional databases, and is a

09_9781118012529-ch07.indd 14209_9781118012529-ch07.indd 142 3/21/11 8:54 AM3/21/11 8:54 AM

Data Options — Miscellaneous New JavaScript Features 143

much safer approach than performing string concatenation on the actual
SQL code. If you have no parameters, just pass empty square braces ([])

 ✓ Success callback function: If the query is successful, call the function
named here. The function can be defined elsewhere (in which case only
the function name is necessary) or it can be defined in place with an anon-
ymous function definition. If you do not want to use a callback function,
use the value null in place of a function name. If you are requesting data
from the database, you will need a callback function. In this case, I pass
control on to the showData function after a successful query request.

 ✓ Failure callback function: A second callback function can be called if the
request is a failure. Typically, this function will report the problem. If you
do not want a function to be called, you can use the value null.

Practical considerations of WebSQL

WebSQL sounds like a really great technology, and it is something that develop-
ers are pretty excited about. However, it might not be the best technology to
use yet. Although it is available now on Safari, Chrome, and Opera, not surpris-
ingly Microsoft is not on board. More shocking is the other holdout. Firefox does
not implement WebSQL, and insists it will not support the standard. WebSQL is
not formally a part of HTML5 and may not become part of the standard.

Firefox is backing a different variation called IndexedDB. At the moment, this is
supported only in the gecko-based browsers (Firefox/Mozilla), but the other
developers are showing interest. It will be worth watching to see what happens.
The localStorage mechanism (see “Local storage,” earlier in this part) is per-
fectly fine to use now with modern browsers.

Miscellaneous New JavaScript Features
The HTML5 standard includes a number of other handy features. These are not
as easy to categorize, but they do offer impressive new capabilities. Read on to
figure out where the browser is, set up notifications, and connect to the server
with Web sockets.

Geolocation

Often it’s useful to know where the browser is in the world. For mobile apps,
this can be especially useful because you can use this information to provide
interesting services. For example, you might return search requests that are
physically close to the user’s location.

Many mobile browsers have access to GPS units on the same machine, which
can provide quite accurate position information. Browsers on cellphones can

09_9781118012529-ch07.indd 14309_9781118012529-ch07.indd 143 3/21/11 8:54 AM3/21/11 8:54 AM

144 Part 7: Changes in JavaScript

get broad position indication by determining which tower they are getting a
signal from, and more precise information by triangulating on multiple towers if
they are available. Even a page on a standard desktop machine can provide lim-
ited location information by investigating the IP number and other resources.

Up to now, there has not been a standard method to retrieve position informa-
tion from all these various sources. The new geolocation API is a part of the
HTML specification. It provides an easy interface to Web developers so your
application can try to determine where exactly the user is.

The basic behavior of this mechanism is a very simple JavaScript call:

 function getLoc(){
 navigator.geolocation.getCurrentPosition(showMap);
 } // end getLoc

This function would typically be called from the body.onload mechanism or
some other initialization script. It calls a single function: navigator.geoloca-
tion.getCurrentPosition(). The function takes a single argument, which is
a callback function. The callback function is the name of a function that should
be called as soon as the location has been determined. In my example here, I
call the function showMap():

 function showMap(position){
 var lat = position.coords.latitude;
 var long = position.coords.longitude;
 var linkUrl = “http://maps.google.com?q=” + lat + “,” + long;
 var mapLink = document.getElementById(“mapLink”);
 mapLink.href = linkUrl;
 var embedMap = document.getElementById(“embedMap”);
 embedMap.src = linkUrl + ”&z=16&output=embed”;
 } // end showMap

The showMap function is automatically called when the browser has retrieved
its location. (The actual method of location discovery is entirely up to the
browser and the host hardware; the application doesn’t know or care exactly
how the location has been retrieved.)

 1. Accept position object as a parameter. The callback function is always
passed a special object called position.

 2. Extract latitude and longitude from the position. The position object
has a property called coords. This is another object with two properties:
lattitude and longitude. Store those values into local variables for
easier handling.

 3. Do something with the position data. Latitude and longitude numbers are
interesting, but you’ll probably want to do something with them. The sim-
plest and easiest thing to do is make a link to Google maps.

09_9781118012529-ch07.indd 14409_9781118012529-ch07.indd 144 3/21/11 8:54 AM3/21/11 8:54 AM

Miscellaneous New JavaScript Features 145

 4. Build a Google maps link. By digging around on the Google maps page, I
was able to figure out how to get a map for any latitude and longitude.
Simply make a link to maps.google.com?q=lat, long, where lat is
the latitude, and long is the longitude. I used string concatenation to
make this link into a string variable. Of course, you aren’t limited to
Google maps. Just use the latitude and longitude however you want.

 5. Make a link to the map. I already have a link on the page. I used standard
DOM manipulation techniques to set the href property of the link to the
derived address.

 6. Embed a map. It’s also possible to embed a map directly on the page. The
result of a Google Maps search includes some ‘embed this’ code. I simply
copied that code and modified it to accept the lattitude and longitude from
the current location. Note that the technique shown here uses a technique
called the iFrame, which is generally not encouraged. Still, it’s cool.

The geolocation API does have some security implications. It allows the page to
determine where the browser is in physical space. Of course, the user may not
want to disclose this information. Location information is never released with-
out the user’s permission. Whenever the user goes to a page that requests loca-
tion information, the browser pops up a notification that the page is requesting
location data. The user can choose to allow or disallow this behavior.

There is much more that can be done with geolocation. For example, you can
set up a second function to be called if there is an error getting the position. You
can also determine the accuracy of the location. Some kinds of location informa-
tion (such as GPS) is very precise, where other types (IP) are less precise. It’s
also possible that a device will use several increasingly accurate types of loca-
tion, so the accuracy may change over time. (The iPhone uses this technique,
finding a very general location first through cell tower location, then eventually
spooling up the GPS receiver.)

All major browsers except IE support some form of geolocation. You can use the
Google Gears extension to add this capability to IE, or the geo.js library from
Google (http://code.google.com/p/geo-location-javascript) to sim-
plify cross-platform location management.

The coords object has a few other properties that may be available (based on
your device):

 ✓ altitude: The altitude in meters.

 ✓ accuracy: The accuracy of the current measurement in meters.

 ✓ heading: The direction in degrees the user is traveling.

 ✓ speed: The user’s speed in meters per second.

09_9781118012529-ch07.indd 14509_9781118012529-ch07.indd 145 3/21/11 8:54 AM3/21/11 8:54 AM

146 Part 7: Changes in JavaScript

Heading and speed will work only if the browser has been given multiple loca-
tions. This is done with the navigator.geolocation.watchPosition()
function. This function works just like getCurrentPosition(). It takes
exactly the same parameters (one or two callback functions). The watch
Position() mechanism calls the callback function whenever the browser
has changed position.

Notifications

The notification API is a proposal currently supported in Chrome. It allows the
developer to add an operating system–level notification window from the
browser. Notifications are something like the old alert() box, but they allow a
great deal more flexibility.

Like many other advanced JavaScript functions, notifications require user per-
mission. It’s necessary to ask the user for permission before popping up
notifications.

Here’s an example:

 function notify(){

 if (window.webkitNotifications) {
 //notifications allowed, so proceed...

 //check to see if we have permission from user
 if (window.webkitNotifications.checkPermission() == 0)
{

 //You have permissions
 var note = window.webkitNotifications.
createNotification(
 ‘andyGoofy.gif’,
 ‘Hi there’,
 ‘This is my notification’);
 note.show();
 }else{
 //request permission
 window.webkitNotifications.requestPermission();
 alert(“You may need to click the ‘notify’ button
again”);
 } // end “got permission” if

 } else {
 //notifications not supported

09_9781118012529-ch07.indd 14609_9781118012529-ch07.indd 146 3/21/11 8:54 AM3/21/11 8:54 AM

Miscellaneous New JavaScript Features 147

 alert(“Notifications are not supported in this browser”);

 } // end if

 } // end notify

Building a notification is similar to many other new JavaScript tools. Here’s how
it works:

 1. Notification must be in response to a user event. I put my notification
code in a (cleverly-named) function named notify. This function cannot
be called with body onload or other initialization techniques.
Notifications can be activated only in response to direct user actions. This
should prevent some of the abuses that occurred when pop-up windows
were used as notifications.

 2. Check to see if notifications are allowed. Use the window.webkitNoti-
fications call to determine whether notifications are supported.
Currently, only WebKit supports notifications, so all notification functions
have the webkit prefix. This will likely be dropped as other browsers
incorporate this functionality.

 3. See if the user has granted permission to send notifications. Notifications
require user permission. If the user has been to this site before (and
granted permission), the browser will remember that fact. The webkit-
Notifications.checkPermissions() method returns a numeric code
(0 means that permission has been granted).

 4. Create the notification. The actual notification will look like a small dialog
box outside the browser. Build the actual notification with the webkit-
Notifications.createNotification() method. This method
expects three parameters: an image, a text title, and the message to be
displayed. Temporarily store the notification in a variable.

 5. Display the notification. Use the notification’s show() method to display
the notification to the user.

 6. Request permission if necessary. Steps 4 and 5 were executed only if the
user has granted permission already. If not, request permission to send
notifications using the webkitNotifications.requestPermission()
method. This will pop up a small dialog asking the user if she is willing to
accept notifications. If so, remind users to press the button again, to actu-
ally get the notification.

 7. If the user’s browser does not support notifications, inform her so. It’s
possible (even likely) that the user’s browser does not support notifica-
tions. If not, you can fall back on the standard alert() box to send infor-
mation to the user.

09_9781118012529-ch07.indd 14709_9781118012529-ch07.indd 147 3/21/11 8:54 AM3/21/11 8:54 AM

148 Part 7: Changes in JavaScript

The notification mechanism is nice, but it isn’t completely necessary. It’s possi-
ble to send similar information to the user in other ways. This technique is
worth keeping an eye on, but currently it isn’t terribly useful.

Web sockets

Web sockets are one of the most technically advanced additions to HTML5, and
they also have the potential to afford the most dramatic change to the way
Internet work is done.

To understand Web sockets, you need to understand how the Web works now.
Most Web work is done through the HTTP (HyperText Transfer Protocol). This
communication method is quite efficient at sending the kinds of requests that
the traditional Internet is based on: The user requests a document, and the
server sends it back. HTTP is a stateless protocol. That means after a transaction
has occurred, the connection between the client and the server is completely
broken, and the next transaction will require an entirely new connection. This is
a good thing for most applications. Imagine a client goes to your Web page and
asks for a form. He looks at it, but decides to go to bed and fill it out in the morn-
ing. With stateless HTTP, your server doesn’t need to maintain an active connec-
tion to that client all night. When the user does decide to submit the form, he’ll
create a brand-new transaction.

As the Web moves towards an application framework (rather than the docu-
ment-passing metaphor), the stateless nature of HTTP can become a barrier.
One reason AJAX has become so popular is because of how it breaks a large
transaction into a series of smaller HTTP requests (often without the user know-
ing this is happening). This allows for more fluid communication between the
client and the server. However, there is still a lot of overhead in creating hun-
dreds of little stand-alone requests.

Long before the Web as we know it, programmers were using an idea called
sockets to allow remote computers to communicate with a persistent connec-
tion. If you’ve ever used a Telnet, FTP, or SSH client, you’ve used a program that
uses sockets. Typically, the programmer builds two types of sockets: One that
lives on the server (a — wait for it — server socket) and one that lives on the
client. (You’re way ahead of me . . . a client socket.) These two programs commu-
nicate by a predetermined stylized communication agreement, called a commu-
nications protocol. In fact, Telnet, FTP, HTTP, and many other Internet tools are
really more protocols than software. A Telnet program is actually a multipur-
pose socket client, and it can be used to test many different kinds of server
sockets. The Web server itself is a specialized server that mainly speaks HTTP
protocol, and the Web browser is a specialized client that speaks HTTP.

You can use a socket tool like Telnet to connect to an HTTP server. To test this,
run the following code from the command line. (It should work the same on all
major platforms: They all have a basic Telnet program built in.)

telnet aharrisbooks.net 80

09_9781118012529-ch07.indd 14809_9781118012529-ch07.indd 148 3/21/11 8:54 AM3/21/11 8:54 AM

Miscellaneous New JavaScript Features 149

You’ve connected to the server using port 80 (the standard Web server port).
You’ll see a response that looks like the following. (Boldface indicates that this
comes from the server.)

Trying 66.40.52.176...

Connected to www.aharrisbooks.net.

Escape character is ‘^]’.

Now the server thinks you’re a browser. To get a particular page, you need to
send the same request the browser would send. Here’s the request needed to
get the index for my JavaScript book:

GET /jad/index.html HTTP/1.1

host: www.aharrisbooks.net

Press the Enter key twice after the last line to submit the request. You’ll see a long
string of HTML code — all the code that makes up the page. Of course, you’ll see
only the code because this isn’t a real browser. At the end, you’ll see this line:

Connection closed by foreign host.

This always happens because HTTP is a stateless protocol. After every request,
the connection is entirely broken.

Web sockets provide an additional protocol. You can still connect to the Web
page in the normal way, but when you implement a Web socket, you write code
in your Web page that can connect to a server socket and communicate with it.
While the page itself still uses the stateless HTTP protocol, the socket connec-
tion remains in place as long as the page is active, allowing for complete two-
way communication without re-establishing a connection.

The type of connection you get with this mechanism is ideal for applications
that require a great deal of client-server communication, such as chat applica-
tions and multiplayer games.

Of course, to build a Web socket connection, you need to have both a client and
a server. Typically, the server is written in a language like PHP or Python. Here
are some examples:

 ✓ PHP Web socket: http://code.google.com/p/phpwebsocket/

 ✓ Python Web socket: http://code.google.com/p/pywebsocket

Of course, building a server socket requires knowledge of both socket program-
ming and the language the server is built with. Many modern languages support
a generic socket mode that can be used to create a specialized Web socket.

09_9781118012529-ch07.indd 14909_9781118012529-ch07.indd 149 3/21/11 8:54 AM3/21/11 8:54 AM

150 Part 7: Changes in JavaScript

Creating a server socket is beyond the scope of this book, so I focus on connect-
ing to an existing server. There’s a very nice echo server available at http://
websockets.org/echo.html.

This simple server simply accepts a message from the client and returns it.
Figure 7-1 shows a program that allows the user to input information, which is
sent to the server and echoed back.

Figure 7-1

The entire code is somewhat long, but it is still not terribly complicated:

<!DOCTYPE HTML>
<html lang = “en”>
<head>
<title>WebSocket Test</title>
 <meta charset = ”UTF-8” />
 <style type = ”text/css”>
 h1 {
 text-align: center;
 }

 .error {
 color: red;

09_9781118012529-ch07.indd 15009_9781118012529-ch07.indd 150 3/21/11 8:54 AM3/21/11 8:54 AM

Miscellaneous New JavaScript Features 151

 }
 .response {
 color: blue;
 }

 fieldset {
 width: 80%;
 margin: auto;
 text-align: center;
 -moz-box-shadow: 10px 10px 10px #000000;
 -webkit-box-shadow: 10px 10px 10px #000000;
 }

 #output {
 font-family: monospace;
 width: 80%;
 margin-left: auto;
 margin-right: auto;
 margin-top: 1em;

 background-color: #eeeeee;
 padding: 1em;
 border: 5px groove #cccccc;
 -moz-border-radius: 15px;
 -webkit-border-radius: 15px;

 -moz-box-shadow: 10px 10px 10px #000000;
 -webkit-box-shadow: 10px 10px 10px #000000;
 }
 </style>
 <script language=”javascript” type=”text/javascript”>

 var output;
 var websocket;

 function init(){
 output = document.getElementById(”output”);
 } // end init

 function connect(){
 //open socket
 if (”WebSocket” in window){
 websocket = new WebSocket(”ws://echo.websocket.org/”);
 //note this server does nothing but echo what was passed

09_9781118012529-ch07.indd 15109_9781118012529-ch07.indd 151 3/21/11 8:54 AM3/21/11 8:54 AM

152 Part 7: Changes in JavaScript

 //use a more elaborate server for more interesting
behavior

 output.innerHTML = ”connecting...” ;

 //attach event handlers
 websocket.onopen = onOpen;
 websocket.onclose = onClose;
 websocket.onmessage = onMessage;
 websocket.onerror = onError;
 } else {
 alert(”WebSockets not supported on your browser.”);
 } // end if

 } // end connect

 function onOpen(evt){
 //called as soon as a connection is opened
 output.innerHTML = ”<p>CONNECTED TO SERVER</p>”;
 } // end onOpen

 function onClose(evt){
 //called when connection is severed
 output.innerHTML += ”<p>DISCONNECTED</p>”;
 } // end onClose;

 function onMessage(evt){
 //called on receipt of message
 output.innerHTML += ”<p class = ’response’>RESPONSE: ”
 + evt.data + ”</p>”;
 } // end onMessage

 function onError(evt){
 //called on error
 output.innerHTML += ”<p class = ’error’>ERROR: ”
 + evt.data + ”</p>”;
 } // end onError

 function sendMessage(){
 //get message from text field
 txtMessage = document.getElementById(”txtMessage”);
 message = txtMessage.value;

 //pass message to server
 websocket.send(message);
 output.innerHTML += ”<p>MESSAGE SENT: ” + message + ”</

09_9781118012529-ch07.indd 15209_9781118012529-ch07.indd 152 3/21/11 8:54 AM3/21/11 8:54 AM

Miscellaneous New JavaScript Features 153

p>”;
 } // end sendMessage

 </script>

</head>

<body onload = ”init()”>
 <h1>Web Socket Echo Chamber</h1>
 <form action = ””>
 <fieldset>
 <button type = ”button”
 onclick = ”connect()”>
 connect to server
 </button>
 <label for = ”txtMessage”>
 <input type = ”text”
 id = ”txtMessage”
 value = ”HTML5 Quick Reference For Dummies” />
 </label>
 <button type = ”button”
 onclick = ”sendMessage()”>
 send message
 </button>
 <button type = ”button”
 onclick = ”websocket.close()”>
 disconnect
 </button>

 </fieldset>
 </form>

 <div id=”output”>Click ’connect’ button to connect</div>

</body>
</html>

Setting up the HTML

As usual, the HTML code in the previous section provides the general frame-
work. In this particular example, I have a simple form with three buttons and an
input area:

 1. Initialize in body.onload. The code will have a small amount of initializa-
tion, which will (as usual) be called with the onload attribute of the body
element.

09_9781118012529-ch07.indd 15309_9781118012529-ch07.indd 153 3/21/11 8:54 AM3/21/11 8:54 AM

154 Part 7: Changes in JavaScript

 2. Build a Connect button. One button will call a connect() function, which
will attempt to create the Web socket.

 3. Make an Input element for a message. The user will be able to type in a
message that will be sent to the browser. Build a simple input element
with an associated label for this purpose.

 4. Create a “Send Message” button. Another button will be activated when
the user is ready to send the current message to the server. This will be
attached to a sendMessage() function.

 5. Build a “Disconnect” button. One more button will close the connection.
This code is simple enough that it doesn’t require a special function. It’s
just websocket.close().

 6. Create an output area. Use a simple div for output.

 7. Style to taste. The default form is a bit dull, so use CSS to clean things up.

Creating the form gives you a pretty good idea what the code will have to do.

Connecting to the socket

If you have a Web socket working (as we do in this example), it’s pretty easy to
write the JavaScript code to communicate with that socket. The first task is to
connect to the socket. You do this by creating a websocket object:

 1. Check to see if the browser supports Web sockets. The easiest way to do
this is by checking to see if the WebSocket object is part of the built-in
window object.

 2. Create a new Web socket. The new WebSocket() function creates a
connection to a server socket. You must have the URL of a socket that
you want to build. For this example, I use the echo server at echo.web
socket.org. Note that the URL will always begin with ws because we’re
no longer using the default HTTP protocol. For this connection, we’re
using the new ws (Web socket) protocol. Of course, if you create your
own server, you’ll include the URL to your server here instead.

 3. Attach callback methods to the various events. Like standard HTML, the
websocket object has handles for a number of events. Designate a call-
back function for each of these events. Sometimes you’ll see this done
with anonymous functions, but I think it’s easier to use standard func-
tions. Of course, you’ll have to build each of these functions. (See
“Creating the callback functions,” later in this part).

 4. Inform the user if her browser does not support Web sockets. Not all
browsers support the Web socket standard yet. The latest versions of
Chrome and Firefox 4 support the standard, but IE and Opera lag behind.

09_9781118012529-ch07.indd 15409_9781118012529-ch07.indd 154 3/21/11 8:54 AM3/21/11 8:54 AM

Miscellaneous New JavaScript Features 155

Creating the callback functions

In the last step in the previous section, you refer to a number of functions that
should be called when various events occur. Of course, those functions need to
be created. Most of these functions simply inform the user what is happening.
All of the functions are automatically supplied with the parameter evt, which is
a special object describing what just happened.

 ✓ onOpen: When the connection is opened, pass a message to the user indi-
cating a successful connection. I do all output by concatenating onto the
output element with the innerHTML attribute.

 ✓ onClose: Likewise, all that needs to happen when the connection is
closed is to inform the user.

 ✓ onMessage: This function is called when a message has been sent from
the server. The content of the message is available in evt.data. Pass this
information to the user. I chose to change the color of incoming data so it’s
easy to see what data is coming from the server.

 ✓ onError: This function is called when some sort of error has occurred. If
an error happened, an explanation of the error is available in evt.data.
It’s wise to somehow mark the error (I put it in red text) to make it obvious
that something went wrong.

Sending the message

The user indicates she wants to send a message to the server by clicking the
send message button. This calls the sendMessage() function. This message
passes the message to the Web socket object.

Even this process isn’t too tough:

 1. Extract the message from the text field. In my example, the message is in a
text field called txtMessage, so I extract that value with ordinary
JavaScript code.

 2. Pass the message to the websocket object. The websocket object has a
send() method.

 3. Inform the user the message has been sent. Use the standard mechanism
for letting the user know what is going on. When the server responds, the
onMessage() method will be called automatically.

Some notes about Web sockets

The Web socket protocol is no longer an official part of HTML5, but it is still con-
sidered part of the informal HTML5 canon. All major browsers plan to incorporate
some form of this feature, but currently only Safari, Chrome and Firefox 4 work.

09_9781118012529-ch07.indd 15509_9781118012529-ch07.indd 155 3/21/11 8:54 AM3/21/11 8:54 AM

156 Part 7: Changes in JavaScript

The real advantage of Web sockets comes with the ability to create a custom
server. Web sockets will probably be used most in two scenarios:

 ✓ Thin client: In some applications, all the main work should happen on the
server, and the client should essentially be an interface. This is an ideal
application of Web sockets because the always-open connection provides
very quick client-server communication.

 ✓ Multiuser applications: When several users want to communicate with
each other, they can all talk to a central server. Server sockets will make
this easier to manage than the current mechanisms.

Web workers

The Web is rapidly shifting from a document-serving platform to a system for
managing applications. However, Web browsers have not been able to take full
advantage of modern processors and operating systems.

Essentially, all modern operating systems are multitasking. Many computers still
have only one CPU (central processing unit — the primary “brain” of the com-
puter). A modern machine with no programs running will often have upwards of
50 processes running in the background. (Use your task manager application to
check this on your own machine.) The question is how a single CPU can run all
of these programs. Operating systems use a task-switching algorithm to switch
between various processes and give each program enough CPU time to do its
work. Even computers with multiple CPUs (dual-core processors, for example)
have the same problem; multiple programs need access to the same limited
computing resources. The operating system handles this automatically, and the
programmer doesn’t normally need to think about it.

Normally, a program occupies a single process in memory, which means it takes
its turn along with all the other programs that the OS needs to manage. The Web
browser is a program, and it normally occupies a single process. This worked
fine when browsers were nothing more than document processors. Now,
though, a Web browser acts like an operating system in its own right: It manages
applications and programs, which means new kinds of problems can occur.

The problem comes when you ask the browser to do something computationally
expensive. For example, assume you want the browser to do something a million
times. This is not all that difficult; just use a long for loop. However, while that
loop is running, that’s the only thing the browser can do. There will be no pro-
cessor power left for managing the interface, responding to the mouse, or any-
thing else. The browser (and sometimes the entire operating system) will
appear to lock up while the CPU grinds away on a single problem.

In traditional programming, the solution is to create something called a thread.
Essentially, this is a new miniprogram that gets its own place in the CPU’s to-do
list. Create a thread, put the expensive code in the thread, and let the operating

09_9781118012529-ch07.indd 15609_9781118012529-ch07.indd 156 3/21/11 8:54 AM3/21/11 8:54 AM

Miscellaneous New JavaScript Features 157

system figure out how to run it. Then the main program will not freeze, and the
computation will run in the background. If the CPU has multiple cores, the oper-
ating system will often be able to take advantage of a separate CPU and use it for
the thread.

Until now, Web browsers didn’t have a good way to implement threading. The
browser and all of its code occupied a single thread, and if you had a computa-
tionally expensive problem, you were just out of luck. Most programmers didn’t
mind, because working with threads can be very tricky. You’re always looking
for certain problems called deadlocks and race conditions, so thread program-
ming has long been considered a kind of black art.

HTML5 introduces a fascinating new technology called the Web worker. It’s an
easy and powerful way to add threading capability to your browser. Here’s
essentially how a Web worker does its magic:

 1. Create your page and JavaScript code as usual. Generally, Web workers
are used for optimization, so often you’ll use them to fix some code that’s
running slowly. Generally, you isolate a chunk of code that’s hogging the
CPU (which is often called a critical section). That’s the code you’re going
to move to a Web worker.

 2. Identify computationally expensive code. Find the code that is hogging
CPU resources. Normally, this is a big loop or heavy data initialization.
That’s the code that’s going to be moved to the worker.

 3. Create a separate JavaScript file containing the critical section. Build an
entirely separate file with the .js extension. This file will hold a function
(or perhaps several functions) of code that will benefit from running in a
separate thread.

 4. In your main page, create a Worker object. This is a special new class. It
expects the name of a .js file (normally on the same server as the Web
page) as its single parameter. The browser will create a Web worker
based on that file, which will have the critical section code in it.

 5. Designate a function to run when you receive a message from the worker.
Web workers use a message-passing algorithm. The worker and the main
page are entirely different programs to the CPU. The only way they com-
municate is by passing messages back and forth. The worker object has
an onmessage event handler. Attach a function to this message, and the
function will activate every time the main program receives a message
from the worker.

 6. Pass messages to the worker to tell it what to do. The only way to control
the worker is to pass a message to it. The worker object has a postMes-
sage() method. Send a value to this message, and that message will be
sent to the worker. Of course, you’ll need to set up the worker to receive
the message and act accordingly.

09_9781118012529-ch07.indd 15709_9781118012529-ch07.indd 157 3/21/11 8:54 AM3/21/11 8:54 AM

158 Part 7: Changes in JavaScript

 7. Give the worker an onmessage function. Just like the main page, the
worker (which is, remember, just a JavaScript file) can have an onevent
handler. Attach a function to onevent, and the worker will run that func-
tion whenever the event is triggered.

 8. Write the function code. The worker is an entirely separate program from
the main code. It doesn’t know about the Web page, or any objects on it.
All it knows is the message sent to it. All it can do (apart from any calcula-
tions or processing) is send a message back. However, that’s all we need
for most processing.

 9. Destroy the Worker object when you’re finished. A Web worker takes up
CPU time, so you’ll need to terminate it when you’re done with it — or it
will stay in memory. The worker has a terminate() method that
requests the worker to commit glorious seppuku.

The easiest way to see it in action is to look at a simple example. Take a look at
the following HTML code:

<body>
 <h1>Web worker demo</h1>
 <button onclick = “startWorker()”
 type = “button”>
 start web worker
 </button>
 <button type = “button”
 onclick = “stopWorker()”>
 stop web worker
 </button>

 <div id = “output”>
 default output
 </div>
</body>
</html>

This page is nothing more than a couple of buttons that call startWorker()
and stopWorker(). There’s also a div for output, which will show the output of
any calculations.

This page is going to count from zero to 100,000. Depending on the speed of
your CPU and which browser you use, this problem can take a minute or more.
Without Web workers, your browser would freeze during the loop. However, my
code won’t actually run the loop. Instead, it creates a separate Web worker,

09_9781118012529-ch07.indd 15809_9781118012529-ch07.indd 158 3/21/11 8:54 AM3/21/11 8:54 AM

Miscellaneous New JavaScript Features 159

which runs the loop in an entirely new process. Here’s the JavaScript code
(embedded in the head of the page, as usual):

 //set up global vars
 var worker;
 var output;

 function startWorker(){

 //initialize worker
 worker = new Worker(“worker.js”);
 output = document.getElementById(“output”);

 //when we get a message from worker, run update function
 worker.onmessage = update;

 //tell worker to get started
 worker.postMessage(“start”);
 } // end init

 function update(evt){
 //update the page with current message from worker
 output.innerHTML = evt.data;
 } // end update

 function stopWorker(){
 //stop the worker
 worker.terminate();
 } // end stopWorker

Although we’re doing somewhat advanced programming here, the actual code is
quite simple. Here’s how to set this up:

 1. Build some global variables. I’ll need access to a special Worker object
(which I’ll call worker) and the output element throughout the code. As
usual, any variables that will be used in multiple functions should be
declared outside any functions.

 2. Create three functions. My code uses three functions (on the Web page —
there will be more later). The startWorker function happens when the
user clicks the start worker button. The stopWorker function hap-
pens when the user clicks the stop worker button. (I love naming con-
ventions.) The update function will be called when the main program
receives a message from the worker.

09_9781118012529-ch07.indd 15909_9781118012529-ch07.indd 159 3/21/11 8:54 AM3/21/11 8:54 AM

160 Part 7: Changes in JavaScript

 3. Designate a function to run when the worker sends a message. When the
worker sends a message, a special function will be run. Use the worker.
onmessage designator to specify which function will run when a message
is received. In my example, I will call the update() method (described in
Step 5) whenever my program receives a message from the worker. This
is normally done in the initialization function.

 4. Pass a message to the worker. The only way to communicate with the
worker is to pass a message to it. A message is simply some sort of value.
The worker.postmessage() function lets you send a message to the
worker. I simply send the string “start” in this case. Later when I create
the worker, I’ll need to tell it how to respond to the start message.

 5. Write the update() function. In Step 3, I specified that whenever the page
receives a message from the worker, it should run a function called
update(). Of course, this means I should have a function called update.
The callback function of a Web worker is automatically passed a single
parameter that describes the event that occurred. I call that object evt.

 6. Print any messages coming from the worker. If a message comes from the
worker, copy that message to the innerHTML of the output object. The
evt.data element contains the message sent from the worker.

 7. Stop the worker when requested. If the user wants to stop the worker,
the stopWorker() function does the job. It simply calls the worker’s
terminate() method, which destroys the worker.

So far, you’ve only built the Web page part of the system. The Web worker is a sep-
arate file. Fortunately, it’s really easy to build. Any JavaScript code inside a text file
with the .js extension can be a Web worker. The Web worker will be run by the
operating system as a completely separate program from the browser, which
means it will not block the browser from doing other things. However, the code in
a worker is not related to the browser or the page, so it cannot interact directly
with the page. All of its input comes from messages passed from the browser, and
all the output is messages passed to the browser. The worker cannot work with the
local document (because as far as it knows, there is no local document).

Here’s my simple Web worker (stored in worker.js):

//tell system to runloop when a message comes in
onmessage = runLoop;

function runLoop(evt){
 if (evt.data === “start”) {
 for(i = 0; i < 100000; i++){
 postMessage(i);
 } // end for

09_9781118012529-ch07.indd 16009_9781118012529-ch07.indd 160 3/21/11 8:54 AM3/21/11 8:54 AM

Miscellaneous New JavaScript Features 161

 //send a message showing we’re done
 postMessage(“finished”);
 } // end if
} // end runLoop

The worker is ordinary JavaScript, but it uses the message mechanism to com-
municate with the page:

 1. Run the runLoop() function when a message is received. Use the onmes-
sage mechanism to tell the program to run the runLoop() function
whenever a message comes to the worker.

 2. Build the runLoop() function. This function automatically passes an
event object as its single parameter.

 3. Check to see if the incoming message is “start” or not. The way this
particular example is written, there is only one incoming message. Often
there may be a number of different messages that come in from the
browser. You’ll typically need to look at the incoming event to see what it
is your program should be doing.

 4. Begin a computationally expensive process. For this example, I have the
worker count to 100,000 in a for loop. This is a long enough process that
it would temporarily freeze the browser if it were done in an ordinary
JavaScript function. Because the loop is happening in a separate thread,
the browser will generally not slow down at all.

 5. Pass the current counter back to the browser. You can use the postmes-
sage() method to send some kind of information back to the browser. In
this example, I pass the current counter back to the browser. This will
trigger the browser’s update() function, which will in turn update the
output area.

 6. Pass another message indicating the process is finished. This isn’t neces-
sary, but it can be nice. Doing so gives your main program a way of know-
ing that the process is done — and the worker can be terminated or other
work that depended on the worker can begin.

09_9781118012529-ch07.indd 16109_9781118012529-ch07.indd 161 3/21/11 8:54 AM3/21/11 8:54 AM

162 Part 7: Changes in JavaScript

09_9781118012529-ch07.indd 16209_9781118012529-ch07.indd 162 3/21/11 8:54 AM3/21/11 8:54 AM

Working with the Canvas
The canvas element is one of the most interesting new developments in
HTML5. While the <canvas> tag is an HTML tag, it really isn’t interesting with-
out JavaScript programming. The canvas tag provides a graphics context, which
is an area of the page that can be drawn upon with JavaScript commands.

Canvas supplies a rich toolkit of drawing operations that may very well revolu-
tionize the Web. Innovations in the canvas tag — along with advances in the
speed of JavaScript engines — may very well lead to new uses of the Web. A
number of developers have developed games with the canvas tag and JavaScript
that would have required Flash or Java just a few years ago. Also, the flexibility of
canvas could lead to entirely new visual tools and widgets that are not based on
HTML, which could have profound implications on usability and user interfaces.

The canvas tag is supported by nearly all current browsers. The latest versions
of Chrome, Safari, Opera, and Firefox all support the canvas tag elements com-
pletely. (To be honest, pixel-level manipulation is not available in Firefox 3.x, but
is in Firefox 4.) The one notable holdout is (you probably guessed it) Microsoft.
As of IE8, the canvas tag is still not supported, although support for the canvas
element is promised for IE9. In the meantime, the ExplorerCanvas project avail-
able at http://excanvas.sourceforge.net is a promising alternative. It
allows an easy way to add canvas functionality to even the older versions of IE.

Although many of the features of the canvas element (shadows, transformations,
and images) are available through other parts of the HTML5 universe, the imple-
mentation of the various canvas elements is identical on all browsers that sup-
port the platform.

 Be sure to check out my Web site for working examples of every code fragment
in the book: www.aharrisbooks.net/h5qr.

In this part . . .

✓ Examining Canvas Basics

✓ Previewing Fill and Stroke Styles

✓ Creating Primitive Shapes

✓ Drawing Complex Shapes

✓ Using Images

✓ Adding Transformations

✓ Implementing Animation

✓ Taking a Look at Pixel Manipulation

Part 8

10_9781118012529-ch08.indd 16310_9781118012529-ch08.indd 163 3/21/11 9:40 AM3/21/11 9:40 AM

164 Part 8: Working with the Canvas

Canvas Basics
Begin with a simple demonstration of the canvas tag. The canvas variation of
“Hello World” creates a simple canvas and draws a rectangle on it.

Setting up the canvas

To use the canvas tag, build a Web page with a canvas element in it. Typically,
you’ll provide width, height, and id parameters:

 <canvas id = “drawing”
 width = “200”
 height = “200”>
 <p>Your browser does not support the canvas tag...</p>
 </canvas>

Inside the canvas tag, you can put any HTML code you want. This code will
appear if the browser does not support the canvas tag. Typically, you’ll just put
some sort of message letting the user know what she’s missing.

Nothing interesting happens in a canvas without some kind of JavaScript code.
Often, you’ll use a function to draw on the screen. Here’s my draw() function,
which is called by the body onload event:

 function draw(){
 var canvas = document.getElementById(“drawing”);
 if (canvas.getContext){
 var con = canvas.getContext(‘2d’);
 con.fillStyle = “#FF0000”;
 con.fillRect(10, 10, 50, 50);
 } // end if
 } // end draw

The draw() function illustrates all the main ideas of working with the canvas
tag. Here’s how you build a basic drawing:

 1. Create a variable reference to the canvas. Use the standard getElement
ById() mechanism to create a variable referring to the canvas.

 2. Extract the graphics context from the canvas. Canvas elements have a
graphics context, which is a special object that encapsulates all the draw-
ing methods the canvas can perform. Most browsers support a 2D context
now, but 3D contexts are planned.

 3. Set the context’s fillStyle. The fillStyle indicates how you will color
filled-in areas (like rectangles). The basic approach is to supply a CSS-style
color value. See “Controlling Fill and Stroke Styles,” later in this part, for
information on how to fill with colors, gradients, or image patterns.

10_9781118012529-ch08.indd 16410_9781118012529-ch08.indd 164 3/21/11 8:55 AM3/21/11 8:55 AM

Canvas Basics 165

 4. Create a filled-in rectangle. The graphics context has a few built-in shapes.
The rectangle shape is pretty easy to build. It expects four parameters: x,
y, width, and height. The x and y parameters indicate the position of
the rectangle’s top-left corner, and the width and height parameters
indicate the size of the rectangle. All measurements are in pixels. See
“Drawing Essential Shapes,” later in this part, for more information on the
various types of primitive shapes you can build.

Understanding how canvas works

I go into detail throughout this part, but it’s helpful to begin with an overview of
the way canvas works and what it does in general.

There are really only two main drawing functions in canvas: fill and stroke. Most
drawing is done as a two-step process. First, you define some sort of shape (a
rectangle, an arc, a series of lines), and then you tell the canvas to draw with a
stroke or a fill. A stroke simply draws a line — so if you stroke a rectangle, you’ll
see the outline of the rectangle, but it will not be filled in. The fill draws the
filled-in shape, so a filled rectangle will show the interior of the rectangle.

You can specify a fillStyle, which specifies the color and pattern of subsequent
fill commands. You can also indicate a strokeStyle, which determines how subse-
quent stroke commands will be drawn.

More complex shapes are drawn with a mechanism called paths, which are a
series of line-drawing instructions. You can use paths to create strokes or filled-
in shapes.

You can draw images onto a canvas. You can draw an entire image, or part of an
image, onto the canvas.

You can also draw text directly onto the canvas in various fonts and colors. You
can add shadow effects to your text elements, or even images.

The canvas object gives you access to the underlying data of an image. This
allows you to perform any kind of transformation you want on image data,
including color balancing, adjusting brightness, and so on.

It’s possible to add transformations to any of your objects. Transformations
allow you to move, resize, or rotate any element (text, drawing, or image) you
place on the canvas.

Finally, you can use JavaScript’s animation and user-interface tools to build your
own animations that move an element around in real time or under user control.

10_9781118012529-ch08.indd 16510_9781118012529-ch08.indd 165 3/21/11 8:55 AM3/21/11 8:55 AM

166 Part 8: Working with the Canvas

Controlling Fill and Stroke Styles
Nearly every operation in the canvas implements a fill or stroke style. To get
the most out of canvas, you need to understand how they work. There are three
primary types of styles that can be used on fills and strokes: colors, gradients,
and patterns.

Colors

There are a number of places where you can indicate a color value in the canvas
API. In general, you can use the same color tools you use in CSS and HTML:

 ✓ Six-digit hex values: The most common way to manage colors is with the
same six-digit hexadecimal scheme commonly used in CSS, with two digits
each for red, green, and blue. The value begins with a pound sign. For
example, #FF0000 is red, and #FFFF00 is yellow.

 ✓ Three-digit hex values: Hex color values often use repeating values, so
you can abbreviate these values as three-digit numbers. In this scheme,
red is #F00, and yellow is #FF0

 ✓ Color names: You can often use color names, like “red” or “yellow.”
Common color names will usually work, but not all browsers support the
same list of color names, so “papaya whip” is not likely to be supported. (It
sounds more like a desert recipe than a color to me anyway.)

 ✓ RGB and RGBA values: You can use the rgb() function to create colors
using integers (0–255) or percentages (0%–100%). Red would be rgb(255,
0, 0), and yellow is rgb(100%, 100%, 0%). Note that the rgb function
must go in quotes like any other color value. If you want to include alpha,
add a fourth parameter, which is a zero-one value. Transparent red would
be rgba(255, 0, 0, 0.5).

 ✓ HSL and HSLA: The new hsl and hsla color formats are supposed to be
supported by the canvas element, but so far, the support for these fea-
tures varies by browser.

Note that the various values for a color are always enclosed in quotes. The color
parameter is a string that can be interpreted as a CSS color.

Gradients

You can also fill a shape with a gradient. Canvas gradients are defined in two
steps:

 ✓ Create a gradient object. There are two methods built into the context
object for this. One builds linear gradients, and the other builds radial
gradients.

10_9781118012529-ch08.indd 16610_9781118012529-ch08.indd 166 3/21/11 8:55 AM3/21/11 8:55 AM

Controlling Fill and Stroke Styles 167

 ✓ Add color stops. A color stop is a special element that indicates a color to
be added to the gradient. You can add as many colors as you want, and
you can also specify where along the gradient pattern the color will
appear.

The following code builds a radial gradient and a linear gradient on a canvas:

 function draw(){
 var drawing = document.getElementById(“drawing”);
 var con = drawing.getContext(“2d”);

 //build a linear gradient
 lGrad = con.createLinearGradient(0,0,100,200);

 lGrad.addColorStop(0, “#FF0000”);
 lGrad.addColorStop(.5, “#00FF00”);
 lGrad.addColorStop(1, “#0000FF”);

 con.fillStyle = lGrad;
 con.fillRect(0, 0, 100, 200);

 //build a radial gradient
 rGrad = con.createRadialGradient(150, 100,
 0, 150, 100, 100);
 rGrad.addColorStop(0, “#FF0000”);
 rGrad.addColorStop(.5, “#00FF00”);
 rGrad.addColorStop(1, “#0000FF”);

 con.fillStyle = rGrad;
 con.fillRect(100,0, 200, 200);

 } // end draw

The output of this code is shown in Figure 8-1.

A linear gradient is a pattern of colors that blend into each other along a
straight-line path. To define a linear gradient, follow these steps:

 1. Create a variable to hold the gradient. Gradients are a little more complex
than simple colors, so they are stored in variables to be reused.

 2. Build the gradient. Use the createLinearGradient() method of the
context object to build a linear gradient.

10_9781118012529-ch08.indd 16710_9781118012529-ch08.indd 167 3/21/11 8:55 AM3/21/11 8:55 AM

168 Part 8: Working with the Canvas

Figure 8-1

 3. Define the gradient path. The createLinearGradient() method
expects four parameters. These define a line (x1, y1, x2, y2). The colors
will be perpendicular to this line, so if you want horizontal color bands,
draw a vertical line. If you want vertical color bands, draw a horizontal
line. In my example, I drew a diagonal line for diagonal colors. The line
typically takes up the entire width or height of the element, but it does
not have to. If the line is smaller than the image, the excess area will be
automatically assigned a color from the nearest end of the gradient.

 4. Add color stops. Gradients aren’t much fun without colors. The add
ColorStop() method of the gradient object allows you to add a color to
the gradient. Each color stop has two parameters: position and color. The
position is a 0–1 value indicating where on the gradient line the color
should be positioned. 0 is the beginning, 1 is the end, and intermediate
values are in the middle. The color parameter is a text value that can be
evaluated as a CSS color. (You can use any of the mechanisms described
in the preceding section.) At a minimum, you should define two color
stops, one for the beginning and one for the end.

 5. Apply the gradient as a fill pattern. If you want to use the gradient as a fill
pattern, set the context’s fillStyle to the gradient variable you just
created. All subsequent fills will be done using the gradient pattern (until
the fillStyle is changed to something else).

10_9781118012529-ch08.indd 16810_9781118012529-ch08.indd 168 3/21/11 8:55 AM3/21/11 8:55 AM

Controlling Fill and Stroke Styles 169

Radial gradients are similar. Rather than drawing a gradient in a straight line, they
draw a series of circular color bands. The first color is the center of the circle, and
the last color defines an outer radius. Building a radial gradient is very similar to
building a linear gradient. The only difference is the create command.

Use the console object’s createRadialGradient() method to build a radial
gradient. This command actually takes six parameters:

 ✓ beginX: The X position of the starting point. This is often in the center of
your shape.

 ✓ beginY: Along with beginX, this determines the beginning position of
your gradient.

 ✓ beginRadius: The radius of your center circle. Usually this is zero, but
you can make it larger if you want to emphasize the center color more.

 ✓ endX: Describes the X position of the ending circle. Typically, this is the
same as beginX.

 ✓ endY: Along with endX, defines the position of the ending circle. If the
beginning and ending circles have the same positions, you’ll get a circular
gradient. Change the ending position to make the gradient stretch in a par-
ticular direction.

 ✓ endRadius: The ending radius defines where the last color gradient will
be placed. Smaller values for this radius will lead to a tightly grouped gra-
dient, and larger values will spread the gradient along a larger area.

Once the gradient is defined, the addColorStops() method works exactly
like it does for linear gradients. The variable created through the addRadial
Gradient() command is usually stored in a variable, where it can be used for
subsequent fillStyle() requests.

Patterns

A pattern is used to define an image to be used as a fill or stroke. You can use
any image as a pattern, but it’s generally best to find or create an image that is
designed to be tiled. (Check out my book, HTML, XHTML, & CSS All-in-One For
Dummies, 2nd edition, for complete information on how to build tiled patterns
using free software.)

There are many sources of tiled patterns available on the Web as well. Once
you’ve got an image you want to use as a fill pattern, here’s how to implement it
in the canvas tag:

 function draw(){
 var drawing = document.getElementById(“drawing”);
 var con = drawing.getContext(“2d”);

10_9781118012529-ch08.indd 16910_9781118012529-ch08.indd 169 3/21/11 8:55 AM3/21/11 8:55 AM

170 Part 8: Working with the Canvas

 var texture = document.getElementById(“texture”);

 pFill = con.createPattern(texture, “repeat”);
 con.fillStyle = pFill;

 con.fillRect(10,150,190,150);

 con.font = “40px sans-serif”;
 con.fillText(“Pattern!”, 20, 80);

 con.strokeStyle = pFill;
 con.lineWidth = 5;
 con.strokeRect(10, 10, 180, 100);

 } // end draw

You can see the results of this code in Figure 8-2.

Figure 8-2

A pattern is simply an image. Building a pattern is relatively straightforward:

 1. Get access to an image. You’ll need a JavaScript image object to serve as
the basis of your pattern. There are a number of ways to do this, but the
easiest is to create the image somewhere in your HTML, hide it with the
display:none style, and use the standard document.getElementById()

10_9781118012529-ch08.indd 17010_9781118012529-ch08.indd 170 3/21/11 8:55 AM3/21/11 8:55 AM

Controlling Fill and Stroke Styles — Drawing Essential Shapes 171

technique to get access to your image. (See “Images,” later in this part, for
alternate ways to load images.)

 2. Create a variable for the pattern. Like gradients, pattern fills can be
reused, so store the pattern in a variable for later reuse.

 3. Build the pattern. The context’s createPattern() method creates a pat-
tern from an image.

 4. Specify the pattern’s repeat parameter. The second parameter indicates
how the pattern will repeat. The default value is “repeat”, which repeats
the pattern in both the X and Y axes indefinitely. If your pattern is not
tiled, you will see a visible seam where the pattern repeats. You can also
set the repeat value to reapeat-x, repeat-y, and no-repeat.

 5. Apply the pattern variable to the fillStyle or strokeStyle. Assign
the pattern variable to the context’s fillStyle (or strokeStyle) and
then perform any fill operation to draw in the pattern.

Drawing Essential Shapes
A few primitive shapes can be drawn directly onto the graphics context. The
most common shapes are rectangles and text, which can also have shadows.

Drawing rectangles

You can draw three different types of rectangles:

 ✓ clearRect(x, y, w, h): Erases a rectangle with the upper-left corner
(x,y) and size (w,h). Generally, erasing will draw in the background color.

 ✓ fillRect(x, y, w, h): Draws a box with upper-left corner (x, y) and
size (w,h). The rectangle is filled in with the currently defined fillStyle.

 ✓ strokeRect(x, y, w, h): Draws a box with upper-left corner (x, y)
and size (w,h). The box is not filled in, but the outline is drawn in the cur-
rently-defined strokeStyle and using the current lineWidth.

Figure 8-3 illustrates a few rectangles.

Here’s the code that generates Figure 8-3.

 function draw(){
 var drawing = document.getElementById(“drawing”);
 var con = drawing.getContext(“2d”);

 con.fillStyle = “red”;
 con.strokeStyle = “green”;

10_9781118012529-ch08.indd 17110_9781118012529-ch08.indd 171 3/21/11 8:55 AM3/21/11 8:55 AM

172 Part 8: Working with the Canvas

 con.lineWidth = “5”;

 con.fillRect(10, 10, 180, 80);
 con.strokeRect(10, 100, 180, 80);

 } // end draw

Figure 8-3

Drawing text

The canvas tag has complete support for text. You can add text anywhere on
the canvas, using whichever font style and size you want.

Figure 8-4 shows a canvas with embedded text.

Text is drawn onto the canvas much like a rectangle. The first step is to pick the
desired font. Canvas fonts are created by assigning a font to the context’s font
attribute. Fonts are defined like the single-string font assignment in CSS. You can
specify all the font characteristics in the same order you do when using the font
shortcut: style, variant, weight, size, and family.

When you’re ready to display actual text on the screen, use the fillText()
method, which accepts three parameters. The first parameter is the text to dis-
play. The last two parameters are the X and Y position of the left-hand side of
the text. The following code is used to produce the result shown in Figure 8-4:

10_9781118012529-ch08.indd 17210_9781118012529-ch08.indd 172 3/21/11 8:55 AM3/21/11 8:55 AM

Drawing Essential Shapes 173

 function draw(){
 var drawing = document.getElementById(“drawing”);
 var con = drawing.getContext(“2d”);

 //clear background
 con.fillStyle = “white”;
 con.fillRect(0,0, 200, 200);

 // draw font in red
 con.fillStyle = “red”;
 con.font = “20pt sans-serif”;
 con.fillText(“Canvas Rocks!”, 5, 100);
 con.strokeText(“Canvas Rocks!”, 5, 130);

 } // end draw

Figure 8-4

Enhancing shapes with shadows

You can add shadows to anything you draw on the canvas. Shadows are quite
easy to build. They require a number of methods of the context object:

 ✓ shadowOffsetX: Determines how much the shadow will be moved along
the X axis. Normally, this will be a value between zero and 5. A positive
value moves the shadow to the right of an object. Change this value and
the shadowOffsetY value to alter where the light source appears to be.

10_9781118012529-ch08.indd 17310_9781118012529-ch08.indd 173 3/21/11 8:55 AM3/21/11 8:55 AM

174 Part 8: Working with the Canvas

 ✓ shadowOffsetY: Determines how far the shadow is moved along the x
axis. A positive value moves the shadow below the object. In general, all
shadows on a page should have the same X and Y offsets to indicate con-
sistent lighting. The size of the offset values implies how high the element
is “lifted” off the page.

 ✓ shadowColor: Indicates the color of the shadow. Normally, this is defined
as black, but the color can be changed to other values if you want.

 ✓ shadowBlur: The shadowBlur effect determines how much the shadow
is softened. If this is set to zero, the shadow is extremely crisp and sharp.
A value of 5 leads to a much softer shadow. Shadow blur generally lightens
the shadow color.

If you apply a shadow to text, be sure that the text is still readable. Large simple
fonts are preferred, and you may need to adjust the shadow color or blur to
ensure the main text is still readable.

Once you’ve applied shadow characteristics, all subsequent drawing commands
will incorporate the shadow. If you want to turn shadows off, set the shadow
Color to a transparent color using RGBA.

Here’s the code to produce text with a shadow:

 function draw(){
 var drawing = document.getElementById(“drawing”);
 var con = drawing.getContext(“2d”);

 //clear background
 con.fillStyle = “white”;
 con.fillRect(0,0, 200, 200);

 // draw font in red
 con.fillStyle = “red”;
 con.font = “20pt sans-serif”;

 //add shadows
 con.shadowOffsetX = 3;
 con.shadowOffsetY = 3;
 con.shadowColor = “black”;
 con.shadowBlur = 5;
 con.fillText(“Canvas Rocks!”, 5, 100);

 } // end draw

10_9781118012529-ch08.indd 17410_9781118012529-ch08.indd 174 3/21/11 8:55 AM3/21/11 8:55 AM

Drawing Essential Shapes — Drawing More Complex Shapes 175

Drawing More Complex Shapes
More complex shapes are created using the path mechanism. A path is simply a
series of commands played back by the graphics context. You can think of it as
a recording of pen motions. Here’s an example that draws a blue triangle with a
red border:

 function draw(){
 var drawing = document.getElementById(“drawing”);
 var con = drawing.getContext(“2d”);

 con.strokeStyle = “red”;
 con.fillStyle = “blue”;
 con.lineWidth = “5”;

 con.beginPath();
 con.moveTo(100, 100);
 con.lineTo(200, 200);
 con.lineTo(200, 100);
 con.lineTo(100, 100);
 con.closePath();
 con.stroke();
 con.fill();
 } // end draw

The code shown here generates the output displayed in Figure 8-5.

Figure 8-5

10_9781118012529-ch08.indd 17510_9781118012529-ch08.indd 175 3/21/11 8:55 AM3/21/11 8:55 AM

176 Part 8: Working with the Canvas

The technique for drawing a path is not terribly complicated, but it does involve
new steps.

 1. Generate the graphics context. All canvas programs begin by creating a
variable for the canvas and another variable for the graphics context.

 2. Set the stroke and fill styles. The stroke style indicates the color of lines.
The lineWidth attribute describes how wide the line will be (in pixels),
and the fill style indicates the color that enclosed shapes will have.

 3. Begin the path. A path is a series of drawing commands. Use the begin
Path() method to start your path definition.

 4. Move the pen. The moveTo(x,y) command moves the pen to a particular
point on the screen without drawing.

 5. Draw lines. The lineTo(x, y) command draws a line from the current
pen position to the indicated (x, y) coordinates. (See “Making arcs and
circles,” “Making quadratic curves,” and “Producing a bezier curve,” later
in this part, for information on other drawing commands.)

 Note that the line will still not be visible. See Step 7.

 6. Close the path. When you’re finished with a path, use the closePath()
function to indicate you are finished defining the path.

 7. Stroke or fill the path. When you define a path, it is not immediately dis-
played! The stroke() command draws a line using the current stroke
style and line width along the path. If you prefer, use the fill() com-
mand to draw a filled-in shape defined by the path. If the path did not
define a closed shape, the fill() command will draw a line from the
ending point to the beginning point. The fill() command fills in the
path with the color, gradient, or pattern designated with fillStyle().

 Note that the closePath() function draws a connecting line between the first
point of the path and the last point. This will create closed shapes. If you want a
path to remain open, use the stroke() command before the closePath()
command. It is still necessary to call closePath() before creating a new path.

 The lineTo() method doesn’t actually draw a line! It simply indicates your
path. The path is not visible until you execute a stroke(), closePath(), or
fill() command.

Line-drawing options

Whenever you are using stroke commands, you can modify the line width and
style with a number of interesting options. Figure 8-6 shows a few of these
choices.

10_9781118012529-ch08.indd 17610_9781118012529-ch08.indd 176 3/21/11 8:55 AM3/21/11 8:55 AM

Drawing More Complex Shapes 177

Figure 8-6

Here’s the code used to create Figure 8-6:

 function draw(){
 var drawing = document.getElementById(“drawing”);
 var con = drawing.getContext(“2d”);

 //change line width and color
 con.strokeStyle = “red”;
 con.lineWidth = 10;

 con.lineJoin = “round”
 con.beginPath();
 con.moveTo(10, 40);
 con.lineTo(20, 10);
 con.lineTo(30, 40);
 con.stroke();
 con.closePath();

 con.strokeStyle = “blue”;
 con.lineJoin = “bevel”
 con.beginPath();
 con.moveTo(40, 40);
 con.lineTo(50, 10);
 con.lineTo(60, 40);

10_9781118012529-ch08.indd 17710_9781118012529-ch08.indd 177 3/21/11 8:55 AM3/21/11 8:55 AM

178 Part 8: Working with the Canvas

 con.stroke();
 con.closePath();

 con.lineJoin = “miter”;
 con.strokeStyle = “green”
 //draw a simple line
 con.beginPath();
 con.moveTo(70, 40);
 con.lineTo(80, 10);
 con.lineTo(90, 40);
 con.stroke();
 con.closePath();

 //line caps
 con.lineCap = “butt”;
 con.strokeStyle = “red”
 con.beginPath();
 con.moveTo(10, 100);
 con.lineTo(90, 100);
 con.stroke();
 con.closePath();

 con.lineCap = “round”;
 con.strokeStyle = “blue”
 con.beginPath();
 con.moveTo(10, 120);
 con.lineTo(90, 120);
 con.stroke();
 con.closePath();

 con.lineCap = “square”;
 con.strokeStyle = “green”
 con.beginPath();
 con.moveTo(10, 140);
 con.lineTo(90, 140);
 con.stroke();
 con.closePath();

 } // end draw

While the code is long, it is quite repetitive. There are only a few new elements:

 ✓ strokeStyle: Use any of the style options (color, gradient, or pattern) to
specify how your line will be drawn.

 ✓ linewidth: Specify the width of your line in pixels.

10_9781118012529-ch08.indd 17810_9781118012529-ch08.indd 178 3/21/11 8:55 AM3/21/11 8:55 AM

Drawing More Complex Shapes 179

 ✓ lineJoin: The lineJoin property indicates how corners will be ren-
dered in your paths. The default form is “miter” (which produces sharp
corners). You can also choose “round” (which gives rounded corners)
and “bevel” (which squares off the corners).

 ✓ lineCap: You can also determine how the ends of the lines are rendered.
Use “round” to produce rounded edges, “square” to produce squared-
off edges, and “butt” to produce edges that are cut off exactly at the line
width. Square and butt look almost identical, but square adds a small
length to each line, and butt cuts off the line immediately.

Making arcs and circles

Arcs and circles are part of the path mechanism. They are created much like
lines, as they are executed as part of a path. Once the path is complete, use the
stroke() or fill() command to actually draw the arc or circle.

Arcs and circles are both created with the arc() method.

To draw an arc or a circle:

 1. Set the stroke or fill style. Like all path-drawing commands, you’ll need to
specify the fill or stroke style before drawing the arc.

 2. Begin a path. Arcs, like lines, must be drawn as part of a path. Arcs can be
combined with lines if you want.

 3. Specify the center of the circle. An arc is simply a partial circle, so you
begin defining an arc by determining the center of a circle. The first two
parameters of the arc() method are the center of the circle.

 4. Indicate the radius of the circle. The third parameter is the radius of the
circle, which describes the arc.

 5. Define beginning and ending points. An arc is a part of a circle. To indicate
which part of the circle you want to draw, indicate the beginning and
ending angles. These measurements are the fourth and fifth parameters of
the arc() method. Note that angles are defined in radians.

 6. Indicate the direction to draw. The last parameter determines the drawing
direction. Use true for counter-clockwise, and false for clockwise.

The arc drawing functions are used in the following code:

 function draw(){
 var drawing = document.getElementById(“drawing”);
 var con = drawing.getContext(“2d”);

 con.strokeStyle = “green”;
 con.fillStyle = “rgba(255,0,0,0.5)”;

10_9781118012529-ch08.indd 17910_9781118012529-ch08.indd 179 3/21/11 8:55 AM3/21/11 8:55 AM

180 Part 8: Working with the Canvas

 con.lineWidth = “5”;

 //half-circle stroked
 con.beginPath();
 con.arc(220, 140, 50, 0, Math.PI, false);
 con.closePath();
 con.stroke();

 //full circle filled
 con.beginPath();
 con.arc(220, 220, 50, 0, Math.PI*2, true);
 con.closePath();
 con.fill();
 }

This code will generate the image shown in Figure 8-7.

Figure 8-7

The angle measurements of the arc() command use radians as the unit of angle
measurement. Radians are frequently used in mathematics rather than degrees.
A radian is simply the angle described when you stretch the radius of a circle
around the circumference of that same circle. Radians are normally expressed
using the constant pi (π), so there are 2 × π radians in a full circle. JavaScript has
the built in constant Math.PI to simplify working with π. You can use the follow-
ing chart to determine the main angles:

10_9781118012529-ch08.indd 18010_9781118012529-ch08.indd 180 3/21/11 8:55 AM3/21/11 8:55 AM

Drawing More Complex Shapes 181

Direction Angle
North 3 × Math.PI / 2
West Math.PI

South Math.PI / 2

East 0

 If you’re familiar with radian measurement, you might think the angles are
upside down. (Typically, π / 2 is North, and 3 × π / 2 is South.) The angles are
reversed because Y increases downwards in computer systems.

Making quadratic curves

The canvas element also supports two elegant curve-drawing mechanisms. A
quadratic curve is a special curve with a starting and ending point. However, the
line between the beginning and ending point is influenced by a control point. As
an example, look at Figure 8-8. It shows a simple curve with a control point.

Figure 8-8

10_9781118012529-ch08.indd 18110_9781118012529-ch08.indd 181 3/21/11 8:55 AM3/21/11 8:55 AM

182 Part 8: Working with the Canvas

If you examine the code for the quadratic curve, you’ll see it works much like
drawing lines and arcs:

 function draw(){
 drawing = document.getElementById(“drawing”);
 con = drawing.getContext(“2d”);

 con.strokeStyle = “black”;
 con.lineWidth = “5”;
 con.beginPath();
 con.moveTo(10,190);
 con.quadraticCurveTo(100, 10, 190, 190);
 con.stroke();
 con.closePath();

 //mark beginning and end with blue
 drawDot(10, 190, “blue”);
 drawDot(190, 190, “blue”);

 //mark control points with red
 drawDot(100, 10, “red”);

 } // end draw

The beginning and ending points of a quadratic curve are described explicitly,
and the line begins and ends on these points. However, the control point doesn’t
usually lie on the curve. Instead, it influences the curve.

Here’s how to build a quadratic curve:

 1. Begin a path. Curves, like most drawing features, act in the context of a
path.

 2. Move to the starting position. Use the moveTo() command to move to
where you want the curve to begin.

 3. Use the quadraticCurveTo() method to draw the curve. This method
takes four parameters: the X and Y position of the control point and the X
and Y position of the end point.

 4. Draw another curve if you want. Like most of the drawing commands, you
can chain a series of quadraticCurveTo() calls together to build a
more complex shape.

 Note that for this example I called a custom function called drawDot to draw
the various points on the screen. See the complete code on my Web site (www.
aharrisbooks.net/h5qr).

10_9781118012529-ch08.indd 18210_9781118012529-ch08.indd 182 3/21/11 8:55 AM3/21/11 8:55 AM

Drawing More Complex Shapes 183

Producing a bezier curve

The bezier curve is another curve-drawing tool. It is similar to the quadratic
curve, except it requires two control points. Figure 8-9 illustrates a bezier curve.

Figure 8-9

Building a bezier curve is almost exactly like building a quadratic curve. The
bezierCurveTo function takes six parameters, the X and Y positions of control
point one, control point two, and the ending point. Here’s the code for the
bezier path shown in Figure 8-9:

 function draw(){
 drawing = document.getElementById(“drawing”);
 con = drawing.getContext(“2d”);

 con.strokeStyle = “black”;
 con.lineWidth = “5”;
 con.beginPath();
 con.moveTo(10,190);
 con.quadraticCurveTo(100, 10, 190, 190);
 con.stroke();
 con.closePath();

 //mark beginning and end with blue
 drawDot(10, 190, “blue”);

10_9781118012529-ch08.indd 18310_9781118012529-ch08.indd 183 3/21/11 8:55 AM3/21/11 8:55 AM

184 Part 8: Working with the Canvas

 drawDot(190, 190, “blue”);

 //mark control points with red
 drawDot(100, 10, “red”);
 } // end draw

Like in the quadratic curve example, I used a custom drawDot() function to
draw circles for the control point. See “Making arcs and circles,” earlier in this
part, for information on how to draw these dots.

Images
While HTML has long had support for images, the canvas interface adds new life
to Web images. Images can be displayed inside a canvas, where they can be inte-
grated with the vector-drawing techniques of the canvas API. You can also select
a portion of an image to display, and apply the various transformations to your
image to create interesting compositions and animations.

Figure 8-10 shows a basic version of this technique, with an image drawn twice
on a canvas element.

Figure 8-10

10_9781118012529-ch08.indd 18410_9781118012529-ch08.indd 184 3/21/11 8:55 AM3/21/11 8:55 AM

Drawing More Complex Shapes — Images 185

Drawing an image on the canvas

The easiest way to use an image in a canvas element is to use an image that is
already available on the Web page. You can put an image on the page with the
ordinary tag and use the CSS display: none rule to make the image
invisible. An alternate approach is to create an Image object in JavaScript and
apply the src attribute to connect that image to a specific image file. For exam-
ples of both techniques, consider the following HTML code:

 <img class = “hidden”
 id = “goofyPic”
 src = “andyGoofy.gif”
 alt = “Goofy pic of me” />

 <canvas id = “drawing”
 height = “400”
 width = “400”>
 <p>Canvas not supported</p>
 </canvas>

The following JavaScript code displays the image in the canvas:

 function draw(){
 var drawing = document.getElementById(“drawing”);
 var con = drawing.getContext(“2d”);
 var goofyPic = document.getElementById(“goofyPic”);
 con.drawImage(goofyPic, 0, 0, 50, 50);

 var image2 = new Image();
 image2.src = “andyGoofy.gif”;
 con.drawImage(image2, 100, 100, 70, 50);
 } // end draw

Here’s how it’s done:

 1. Create the image in the main page. The easiest way to access an image is
to use ordinary HTML to embed the image in the main page. If you want,
you can hide the tag with CSS code (display: none) so that only
the version in the canvas is visible.

 2. Create a JavaScript variable for the image. Use the ordinary document.
getElementByID() mechanism to create a variable referring to the image.

 3. Draw the image on the canvas. The drawImage() function takes five
parameters. The first is the name of an image object. (It must be the name
of a JavaScript image object, not just the file name of an image.) The next
two parameters are the X and Y values of the top-left corner of the image,
and the last two parameters are the size of the image (width and height).

10_9781118012529-ch08.indd 18510_9781118012529-ch08.indd 185 3/21/11 8:55 AM3/21/11 8:55 AM

186 Part 8: Working with the Canvas

 4. Create a JavaScript Image object. If you don’t want to embed an image in
the page, you can use JavaScript to create an image dynamically. Use the
new Image() constructor to build a new image.

 5. Change the image’s src property. If you create a JavaScript image, you
must specify the src attribute to indicate the file associated with the
image. It might take some time for the image to load.

 The image won’t display until it has loaded from the server. In most cases, this
won’t be a problem, but sometimes you’ll find you need to delay your program
until the image has finished loading. The Image object has an onload property
that accepts a callback function. Use this technique to wait until your drawing
finishes:

image.onload = finishDrawing;
function finishDrawing(){
 //rest of drawing code goes here
}

Drawing part of an image

Sometimes you’ll want to draw a small part of the original image. Figure 8-11
illustrates a program focusing in on the center of the goofy face:

Figure 8-11

10_9781118012529-ch08.indd 18610_9781118012529-ch08.indd 186 3/21/11 8:55 AM3/21/11 8:55 AM

 Images — Manipulating Images with Transformations 187

It’s quite easy to draw part of an image. Use the same drawImage() command,
but this time use a version with nine parameters:

 con.drawImage(goofyPic, 60, 70, 90, 90, 0, 0, 150, 150);

Here’s what all these parameters mean:

 ✓ Image name: The first parameter is the image object (not the filename, but
the name of the JavaScript Image object).

 ✓ Top-left corner of source: The first job is to choose the part of the original
picture that will be displayed. The next two parameters indicate the top-
left corner of a selection on the original picture. (You might use an image
editor like Gimp or IrfanView to determine the selection position and size.)

 ✓ Height and width of source: The next two parameters indicate the height
and width of the source selection.

 ✓ Position of destination: The next two parameters are the position of the
picture’s top-left corner on the canvas.

 ✓ Size of destination: The last two parameters describe the size of the desti-
nation image on the canvas.

The subimage technique described here is quite useful because it allows you to
combine several images into a single image (sometimes called a sprite sheet).
This decreases the overhead for delivering the image. (One large image is faster
to deliver than several small ones.) It’s also frequently used in games and anima-
tions where one entity might have several images displayed in sequence to sug-
gest walking or attacking.

Manipulating Images with Transformations
Transformations are math operations that can be applied to any drawing or
image to change the appearance. There are three major transformations:

 ✓ translation: Moves a particular amount in X and Y.

 ✓ rotation: Rotates around a particular point.

 ✓ scale: Changes the size of the object in X and Y.

The canvas element allows all these operations on any type of drawing.
However, the way the canvas element does this gets a little closer to math than
you may have gotten before. Transformations in the canvas element can be hard
to comprehend until you understand a little about how they really work.

10_9781118012529-ch08.indd 18710_9781118012529-ch08.indd 187 3/21/11 8:55 AM3/21/11 8:55 AM

188 Part 8: Working with the Canvas

In math, you don’t really transform objects. Instead, you modify the coordinate
system and draw your image in the newly transformed coordinate system. It’s
common in a vector-drawing application to have several hidden coordinate sys-
tems working at once. That’s important because it’s the way canvas transforma-
tions work. Essentially, when you want to perform transformations on an object,
you’ll do the following:

 1. Announce the beginning of a temporary coordinate system. The main
image already has its own coordinate system that won’t change. Before
you can transform anything, you need to build a new coordinate system
to hold those changes. The (poorly named) save() command indicates
the beginning of a new coordinate system definition.

 2. Move the center with translate(). The origin (0, 0) starts in the
upper-left corner of the canvas by default. Normally, you’ll build your
transformed objects on the (new) origin and move the origin to place the
object. If you translate(50, 50) and then draw an image at (0, 0),
the image will be drawn at the origin of the temporary coordinate system,
which will be at (50, 50) in the main canvas.

 3. Rotate the coordinate system with rotate(). The rotate() command
rotates the new coordinate system around its origin. The rotation parame-
ter is a degree in radians.

 4. Scale the coordinate system in X and Y. You can also alter the new coordi-
nate system by applying X and Y scale values. This allows you to create
stretched and squashed images.

 5. Create elements in the new coordinate system. Once you’ve applied all
the transformations you want, you can use all the ordinary canvas draw-
ing techniques. However, these drawings will be drawn in the virtual coor-
dinate system you just made, not in the canvas’ main coordinate system.

 6. Close the temporary coordinate system. Generally you’ll want to apply dif-
ferent transformations to different parts of your canvas. When you’re fin-
ished with a particular transformation, use the restore() command to
close out the new coordinate system. All subsequent drawing commands
will use the default coordinate system of the canvas object.

Building a transformed image

A real example is easier to follow, so look at the code below:

 function draw(){
 var drawing = document.getElementById(“drawing”);
 var con = drawing.getContext(“2d”);
 var goofyPic = document.getElementById(“goofyPic”);

 con.save();

10_9781118012529-ch08.indd 18810_9781118012529-ch08.indd 188 3/21/11 8:55 AM3/21/11 8:55 AM

Manipulating Images with Transformations 189

 con.translate(100, 100);
 con.rotate(Math.PI / 4);
 con.scale(3.0, 1.5);
 con.drawImage(goofyPic, -25, -25, 50, 50);
 con.restore();

 //draw a rectangle using the ordinary coordinate system
 con.strokeStyle = “red”;
 con.lineWidth = 5;
 con.strokeRect(0, 0, 200, 200);

 } // end draw

This program creates a new coordinate system containing a translation, rota-
tion, and scale. It draws an image in the new coordinate system. It then reverts
to the standard coordinate system and draws a rectangular frame.

This program features several transformations, as shown in Figure 8-12.

Figure 8-12

Here’s how to build this type of image:

 1. Get access to an image object. Load the image from the main site (as I
have done in this example) or through JavaScript code. (See “Drawing an
image on the canvas,” earlier in this part.)

10_9781118012529-ch08.indd 18910_9781118012529-ch08.indd 189 3/21/11 8:55 AM3/21/11 8:55 AM

190 Part 8: Working with the Canvas

 2. Start the transformation with the save() method. The save() method
has (if you ask me) a very confusing name. This method does not save the
canvas to a file. Instead, it saves the current coordinate system settings in
memory and allows you to define a new coordinate system. I would have
called this method beginTransform().

 3. Apply any translations you want. Remember, translations move the entire
coordinate system. If you translate the coordinate system by (100, 100) as
I did in this example, that means any subsequent drawings at (0, 0) will
actually appear in the center of my 200 × 200 canvas.

 4. Rotate the coordinate system if you want. You can apply a rotation to the
coordinate system if you prefer. The system will rotate around its origin.
Typically, to get the behavior you want, design your images so they are
centered on the origin, and translate the origin to move the image.
Rotation angles are defined in radians. If you’re more comfortable with
degrees, you can use this formula to convert: radians = degrees ×
(Math.PI / 180).

 5. Scale the coordinate system by X and Y. You can change the apparent
width and height of your new coordinate system by indicating new scale
values. Scaling is a multiplication operation. If the scale is one, the ele-
ment stays the same size. If the scale is 2, the element is double the origi-
nal size, and .5 is half the original size. You can even scale by a negative
number to invert the image.

 6. Draw your image. Draw on the canvas after you’ve applied all the transfor-
mations. You can do any canvas-drawing techniques you want: paths,
rectangles, images, text, or whatever. The drawing will be modified by the
indicated transformations.

 7. End the transformation. The restore() method should be called
endTransform(). (If you’re listening, W3C, I’m available to help you
come up with better names for things. Let me know when the meetings
are scheduled.) Regardless, this method indicates that you’re done think-
ing about all the transformations that have been declared in this trans-
form, and you’re ready to return to the default coordinate system. The
term restore really means “return to the coordinate state that was saved
with the save command that was called to begin this transformation.”

 8. Subsequent drawings will use the default coordinates. In my example, I
draw an ordinary rectangle around the image. This rectangle should use
the regular coordinates of the canvas — I don’t want it rotated or scaled
like the image. Since these drawing commands exist outside the context of
the save()/restore() pair, they use the regular coordinate system.

10_9781118012529-ch08.indd 19010_9781118012529-ch08.indd 190 3/21/11 8:55 AM3/21/11 8:55 AM

Manipulating Images with Transformations — Using Animation 191

Some key points about transformations

Transformations are an incredibly powerful tool set, and they’re among the
most anticipated features of HTML5. However, they do hide a certain amount of
math. You can use them without understanding linear algebra (the underlying
mathematical theory), but there’s still a few key ideas to keep in mind:

 ✓ Each transformation is stored as a matrix. There’s an underlying struc-
ture called a matrix (that’s even cooler than the movie) which stores all
the translations, rotations, and scales in a single mathematical structure.
You can work with the transformation matrix directly if you prefer, with
the context objects’ transform() method.

 ✓ The order of transformations makes a difference. Try this experiment.
Stand in the center of the room. Now go forward five steps and turn left 90
degrees. Look at where you are. Now go back to the same starting point.
This time, turn left 90 degrees and then go forward five steps. Are you in
the same place? You might need to experiment a bit to get things working
the way you expect.

 ✓ Transform the system and then draw on the origin. Most of the drawing
commands in canvas allow you to draw things anywhere on the canvas. If
you’re not using transformations, you can use this mechanism to place
things wherever you want. However, if you’re using a transformation, it’s
much easier to transform the entire coordinate system and then draw your
elements at the origin (0, 0). Otherwise you’ll get some very strange results
(especially with combined rotations and translations).

Using Animation
Of course, the big question about the HTML5 canvas tag is whether it can replace
Flash as a mechanism for implementing games and animations in the browser.
The jury is still out on this, but it is reasonably easy to add animation to a canvas
image. The key is to use the animation features already built into the browser.

Basic structure of the animation loop

An animation generally requires a special organization called an animation loop.
The basic structure of the animation loop works the same in any language:

 1. Initialization. Create the assets, including the background and any of the
objects you will be using. Objects that will be manipulated in real time are
normally called sprites. Generally, this is done when the program first
runs, to save time during the main execution. You may also set constants
for image size, display size, frame rate, and other values that will not
change during the execution of the game.

10_9781118012529-ch08.indd 19110_9781118012529-ch08.indd 191 3/21/11 8:55 AM3/21/11 8:55 AM

192 Part 8: Working with the Canvas

 2. Determine a frame rate. Animations and games work by calling a function
repeatedly at a prescribed rate. In general, you’ll have some sort of func-
tion that is called repeatedly. In JavaScript, you typically use the set
Interval() function to specify a function that will be called repeatedly.
The frame rate indicates how often the specified function will be called.
Games and animations typically run at frame rates between 10 and 30
frames per second. A faster frame rate is smoother, but may not be main-
tainable with some hardware.

 3. Evaluate the current state. Each sprite is really a data element. During
every frame, determine if anything important has happened: Did the user
press a key? Is an element supposed to move? Did a sprite leave the
screen? Did two sprites conk into each other?

 4. Modify sprite data. Each sprite generally has position or rotation data that
can be modified during each frame. Usually this is done through transfor-
mations (translation, rotation, and scale) although sometimes you may
switch between images instead.

 5. Clear the background. An animation is really a series of images drawn rap-
idly in the same place. Usually, you’ll need to clear the background at the
beginning of each frame to clear out the last frame’s image.

 6. Redraw all sprites. Each sprite is redrawn using its new data. The sprites
appear to move because they’re drawn in a new location or orientation.

 Typically, I would display a screen shot here, but a still image of an animation
won’t be fun to look at in this book. Please look at autoRotate.html on my Web
site (www.aharrisbooks.net/h5qr) to see the program running in real time.
While you’re at it, check out all the other great stuff I’ve got on that site for you.

Creating the constants

As an example, build a program that rotates an image inside a canvas. The com-
plete code is in several parts. I’ll use a basic image as a sprite. The first job is to
set up the various variables and constants that describe the problem. The fol-
lowing code is created outside any functions because it describes values that
will be shared among functions:

 var drawing;
 var con;
 var goofyPic;
 var angle = 0;
 CANV_HEIGHT = 200;
 CANV_WIDTH = 200;
 SPR_HEIGHT = 50;
 SPR_WIDTH = 40;

10_9781118012529-ch08.indd 19210_9781118012529-ch08.indd 192 3/21/11 8:55 AM3/21/11 8:55 AM

Using Animation 193

The drawing variable will refer to the canvas element. The con variable will be
the drawing context, goofyPic is the image to be rotated, and angle will be used
to determine how much the image is currently rotated. The other values are con-
stants used to describe the height and width of the canvas as well as the sprite.

Deploying the animation

As usual, the body onload mechanism will be used to start up some code as soon
as the page has finished loading. However, the page now has two functions. The
init() function handles initialization, and the draw() function will be called
repeatedly to handle the actual animation. Here’s the code in the init() function:

 function init(){
 drawing = document.getElementById(“drawing”);
 con = drawing.getContext(“2d”);
 goofyPic = document.getElementById(“goofyPic”);
 setInterval(draw, 100);
 } // end init

The job of the init() function is to initialize things. In this particular example, I
load up the various elements (the canvas, the context, and the image) into
JavaScript variables, and I set up the animation. The setInterval() function
is used to set up the main animation loop. It takes two parameters:

 ✓ A repeatable function: The first parameter is the name of a function which
will be called repeatedly. In this case, I will be calling the draw function
many times.

 ✓ A delay value: The second parameter indicates how often the function
should be called in milliseconds (1/1000 of a second). A delay of 100 will
create a frame rate of 10 frames per second. A delay of 50 will cause a
frame rate of 20 frames per second, and so on.

Giving animation to the current frame

The draw() function will be called many times in succession. In general, its task
is to clear the frame, calculate new sprite states, and redraw the sprite. Here’s
the code:

 function draw(){

 //clear background
 con.fillStyle = “white”;
 con.fillRect(0, 0, CANV_HEIGHT, CANV_WIDTH);

 //draw border
 con.strokeStyle = “red”;
 con.lineWidth = “5”;

10_9781118012529-ch08.indd 19310_9781118012529-ch08.indd 193 3/21/11 8:55 AM3/21/11 8:55 AM

194 Part 8: Working with the Canvas

 con.strokeRect(0, 0, CANV_WIDTH, CANV_HEIGHT);

 //change the rotation angle
 angle += .25;
 if (angle > Math.PI * 2){
 angle = 0;
 }

 //start a new transformation system
 con.save();
 con.translate(100, 100);
 con.rotate(angle);

 //draw the image
 con.drawImage(goofyPic,
 SPR_WIDTH/-2, SPR_HEIGHT/-2,
 SPR_WIDTH, SPR_HEIGHT);
 con.restore();
 } // end draw

While the code may seem a little involved, it doesn’t really do anything new:

 1. Clear the background. Remember that animation is repeated drawing. If
you don’t clear the background at the beginning of every frame, you’ll see
the previous frame drawings. Use the context’s clearRect() function to
draw a fresh background, or one of the other drawing tools to use a more
complex background image. You must clear the background first, so sub-
sequent drawings will happen on a fresh palette.

 2. Draw any nonsprite content. In this example, I want a red border around
the frame. Just use ordinary canvas elements for this. I used stroke
Style, lineWidth, and strokeRect() to build a red rectangular frame
around my canvas. Note that I used the CANV_HEIGHT and CANV_WIDTH
constants to refer to the current canvas size.

 3. Modify the sprite state. In this example, I want to modify the rotation
angle of the image. I already created a variable called angle outside the
function. (It’s important that angle was created outside the function con-
text so it can retain its value between calls to the function.) I add a small
amount to angle every frame. Whenever you change a variable (espe-
cially in a virtually endless loop like an animation), you should check for
boundary conditions. In this example, I’m changing angles. The largest
permissible angle value (in radians) is 2 × π. If the angle gets larger than 2
× π, it is reset to zero.

10_9781118012529-ch08.indd 19410_9781118012529-ch08.indd 194 3/21/11 8:55 AM3/21/11 8:55 AM

Using Animation 195

 4. Build a transformation. Many animations are really modifications of a trans-
formation. That’s the case here. I’m actually not changing the image at all,
but the transformation that contains the image. Set up a new transforma-
tion with the save() method, and use the rotate() and translate()
functions to transform a temporary coordinate system. (See “Manipulating
Images with Transformations,” earlier in this part, for information on how
transformations relate to temporary coordinate systems.

 5. Draw the image at the center of the new transformation. Remember, the
drawImage() command draws the image based on the top-left corner of
an image. If you draw the image at (0, 0) of the new transformation, the
image will appear to rotate around its top-left corner. Usually, you’ll want
an image to rotate around its center point. Simply draw the image so its
center is at the origin. Set X to zero minus half the image’s width, and Y to
zero minus half the image’s height.

 6. Close the transformation. Use the restore() method to finish defining
the temporary coordinate system.

Moving an element

Often you’ll prefer to move an element. This process is actually very similar to
the rotation mechanism. Here’s some code that moves an image and wraps it to
the other side when it leaves the canvas:

 var drawing;
 var con;
 var goofyPic;
 CANV_HEIGHT = 200;
 CANV_WIDTH = 200;
 SPR_HEIGHT = 50;
 SPR_WIDTH = 40;

 var x = 0;
 var y = 100;
 var dx = 10;
 var dy = 7;

 function init(){
 drawing = document.getElementById(”drawing”);
 con = drawing.getContext(”2d”);
 goofyPic = document.getElementById(”goofyPic”);
 setInterval(draw, 100);
 }

 function draw(){

10_9781118012529-ch08.indd 19510_9781118012529-ch08.indd 195 3/21/11 8:55 AM3/21/11 8:55 AM

196 Part 8: Working with the Canvas

 //clear background
 con.clearRect(0, 0, 200, 200);

 //move the element
 x += dx;
 y += dy;

 //check for boundaries
 wrap();

 //draw the image
 con.drawImage(goofyPic, x, y, SPR_WIDTH, SPR_HEIGHT);

 //draw a rectangle
 con.strokeStyle = ”red”;
 con.lineWidth = 5;
 con.strokeRect(0, 0, CANV_WIDTH, CANV_HEIGHT);

 } // end draw

 function wrap(){
 if (x > CANV_WIDTH){
 x = 0;
 }
 if (x < 0){
 x = CANV_WIDTH;
 }
 if (y > CANV_HEIGHT){
 y = 0;
 } // end if
 if (y < 0){
 y = CANV_HEIGHT;
 }
 } // end wrap

The wrap code is very similar to the rotation program. It has a few different
features:

 ✓ Keep track of the sprite position. The sprite’s position will change now, so
the important variables are x and y, used to track where the sprite is.

 ✓ You also need variables for the sprite’s motion. The dx variable stands
for difference in x, and it is used to show how much the x value changes
each frame. Likewise, dy is used to show how much the y value changes in
each frame. x, y, dx, and dy are all created outside the function context.

10_9781118012529-ch08.indd 19610_9781118012529-ch08.indd 196 3/21/11 8:55 AM3/21/11 8:55 AM

Using Animation — Working with Pixel Manipulation 197

 ✓ Move the element values. In every frame (in the draw() function) add dx
to x and add dy to y.

 ✓ Check for boundaries. I created a new function called wrap() to check for
boundary conditions. The code is pretty straightforward. If the sprite’s x
value exceeds the width of the canvas (meaning it has moved to the right
border of the canvas), reset the x value to 0 (moving it to the left). Use a
similar calculation to check the other borders and reset the image to the
opposite side.

 Once again, a static still image will not show justice to this animation. Please look
at wrap.html on my Web site (www.aharrisbooks.net/h5qr) to see an exam-
ple. The bounce.html page shows the bounce example in the next section.

Now we’re bouncing off the walls

If you prefer to have your sprite bounce off the walls, just replace the wrap()
function with a bounce() function that works like this:

 function bounce(){
 if (x > CANV_WIDTH - SPR_WIDTH){
 dx *= -1;
 }
 if (x < 0){
 dx *= -1;
 }
 if (y > CANV_HEIGHT - SPR_HEIGHT){
 dy *= -1;
 }
 if (y < 0){
 dy *= -1;
 }
 } // end bounce

Working with Pixel Manipulation
The canvas tag has one more incredible trick up its sleeve. You can extract the
data of a canvas tag into the underlying pixel data. If you know how to manipu-
late this data, you can have very extensive control of your image in real time.
You can use this data for color balancing, as well as experimenting with your
own blurs, sharpens, and chroma-key effects.

In order to understand what this is doing, you need to have some knowledge of
how pictures are stored in memory. No matter what format an image is stored in
on the file system, it is displayed as a list of pixels. Each pixel is represented (in

10_9781118012529-ch08.indd 19710_9781118012529-ch08.indd 197 3/21/11 8:55 AM3/21/11 8:55 AM

198 Part 8: Working with the Canvas

the standard 32-bit system, anyway) by four integers: RGBA. The R value repre-
sents how much red is in the current dot. G stands for green, and B stands for
blue. The A stands for alpha, which is a measure of the transparency of the
image. Each of these values can vary from 0 to 255. When you convert an image
to the image data format, you get a huge array of integers. Each group of four
images represents a single pixel of color data.

Here’s an example that changes the color balance of an image:

 function draw(){
 var drawing = document.getElementById(“drawing”);
 var con = drawing.getContext(“2d”);
 var original = document.getElementById(“original”);

 CANV_WIDTH = 200;
 CANV_HEIGHT = 200;

 //draw the original on the canvas
 con.drawImage(original, 0, 0);

 //get the image data
 imgData = con.getImageData(0, 0, 200, 200);

 //loop through image data
 for (row = 0; row < CANV_HEIGHT; row++){
 for (col = 0; col < CANV_WIDTH; col++){
 //find current pixel
 index = (col + (row * imgData.width)) * 4;

 //separate into color values
 r = imgData.data[index];
 g = imgData.data[index + 1];
 b = imgData.data[index + 2];
 a = imgData.data[index + 3];

 //manipulate color values
 r -= 20;
 g += 50;
 b -= 30;
 a = a;

 //manage boundary conditions
 if (r > 255){
 r = 255;
 }
 if (r < 0){

10_9781118012529-ch08.indd 19810_9781118012529-ch08.indd 198 3/21/11 8:55 AM3/21/11 8:55 AM

Working with Pixel Manipulation 199

 r = 0;
 }
 if (g > 255){
 g = 255;
 }
 if (g < 0){
 g = 0;
 }
 if (b > 255){
 r = 255;
 }
 if (b < 0){
 b = 0;
 }
 if (a > 255){
 a = 255;
 }
 if (a < 0){
 a = 0;
 }

 //return new values to data
 imgData.data[index] = r;
 imgData.data[index+1] = g;
 imgData.data[index+2] = b;
 imgData.data[index+3] = a;
 } // end col for loop
 } // end row for loop

 //draw new image onto canvas
 con.putImageData(imgData, 0, 0);

 } // end function

While the code listing seems quite long, it really isn’t too difficult to follow:

 1. Draw an original image. The technique you’ll use extracts data from a
canvas element, so to modify an image you first need to draw it onto a
canvas. I drew my goofy face image on the canvas first with the ordinary
drawImage() method.

 2. Extract the image data. The getImageData() method gets the picture
displayed by the current canvas and places it in a huge array of integers.

 3. Make a loop to handle the rows. Image data is broken into rows and col-
umns. Each row goes from 0 to the height of the canvas, so make a for
loop to iterate through the rows.

10_9781118012529-ch08.indd 19910_9781118012529-ch08.indd 199 3/21/11 8:55 AM3/21/11 8:55 AM

200 Part 8: Working with the Canvas

 4. Make another loop to handle the columns. Inside each row is enough data
to go from 0 to the width of the canvas, so make a second for loop inside
the first. It’s very common to use a pair of nested for loops to step
through two-dimensional data like image information.

 5. Find the index in imageData for the current row and column. The
imageData array contains four integers for each pixel, so we have to
do a little math to figure out where the first integer for each pixel is. The
easiest formula is to multiply the row number by the width of the canvas,
add that to the column number, and multiply the entire result by four.

 6. Pull the corresponding color values from the index. The index also repre-
sents the red value of the current pixel. The next int holds the green
value, followed by the blue value, and finally the alpha value.

 7. Manipulate the color values as you want. If you’re going to do a color-
balancing app (as I’m doing), you can simply add or subtract values to
change the overall color balance. In my example, I add a bit to green and
subtract a bit from red and blue. I chose to leave the alpha alone. Of
course, this is where you can do much more elaborate work if you want
to play around with pixel-level image manipulation.

 8. Check for boundaries. A pixel value cannot be lower than 0 or higher than
255, so check for both of these boundaries and adjust all pixel values to
be within legal limits

 9. Return manipulated values back to the imgData array. You can copy
values back to the array, and you should do so to make the changes visible.

 10. Draw the image data back to the canvas. The putImageData() function
draws the current image data back to the canvas as an ordinary image.
The new version of the image will reflect the changes. In my case, I have a
decidedly ill-looking image.

 Color-balancing is too subtle an effect to display accurately in a black-and-white
screen shot, so please visit my Web site (www.aharrisbooks.net/h5qr) to
see this program in its full glory.

10_9781118012529-ch08.indd 20010_9781118012529-ch08.indd 200 3/21/11 8:55 AM3/21/11 8:55 AM

A
AAC audio encoding, 56
absolute positioning, 100–102
accuracy, 145
action buttons, 39
active pseudo-class, 106
additive color model, 83
add-ons, 4, 52, 53–54, 57, 163
<address> tags, 42
addresses, 42
Adobe Flash

eliminating, 55, 163, 191
embedding, 4, 54
video loading, 56

aggregators, 44
AJAX (Asynchronous JavaScript and XML), 7, 148
alignment of text, 88, 98
alpha value, 114, 115
alternative layout, 95
altitude, 145
Android mobile platform, 12
angle measurements, 180–181
animation, 7, 126–127, 165
anonymous callback functions, 141
Apple iPads, 12
Apple iPhones, 12, 103, 116–118, 145
Apple Safari

early years, 3
gradient syntax, 116–118
Mobile Safari, 119–120
Ogg/Theora/Vorbis, 55–56
WebKit engine, 12, 103

Apple Safari, support for
canvas, 163
columns, 108
flexible box layout, 113
reflections, 119–120
search function, 69
text-stroke (color), 109
Web sockets, 155
WebSQL, 143

applications
browser development in, 131, 132
JavaScript as development framework, 128
multiuser, 156
pages as, 5
Web, 3, 4

arcs, 179–181
<article> tags, 42–43
articles, 6, 42–43

Asian languages, 56
<aside> element, 43
ASP, 7
asterisks in password fields, 35
Asynchronous JavaScript and XML (AJAX), 7, 148
@font-face style, 106–107
attributes, 17, 46–47, 49–50, 62–64, 104. See also specific

attributes
audio, 6, 49–51, 54
<audio> tags, 49–50
autocompletion in search boxes, 69
autofocus attribute, 62
autoplay attribute, 49

B
background, 90–93, 109, 115
backwards enhancement, 17
backwards-compatibility, 6
Berners-Lee, Tim (computer scientist), 2, 3
bezier curves, 183–184
block layout, 95, 96
block-level elements, 58
blur of shadows, 109, 123
body.onload mechanism, 144
borders, in CSS, 89–90, 118–119
boundaries, drawing, 197
browsers. See also specific browsers

as application platform, 131, 132
building gradients in, 116
caching, 133, 134
with database programs, 139
early years, 2–3
features of, 8–12
HTML5 suitability, 7, 12–13
scalable vector graphics in, 55
updating, 134

browsers, limitations of
audio, 49
autofocus, 62
command tags, 47
details, 48
display problems, 93–95
flexible box layout, 113–114
keygen elements, 59
output, 61
placeholders, 63
Ruby markups, 56
section tags, 46
summaries, 48

Index

11_9781118012529-bindex.indd 20111_9781118012529-bindex.indd 201 3/21/11 8:57 AM3/21/11 8:57 AM

browsers, limitations of (continued)
time, 70
transition animation, 127
video, 55–56
WebSQL, 143
word breaks, 49

browsers, support for
canvas, 52, 163
columns, 108
fieldsets, 58
fonts, 107
geolocation, 143–144, 145
local storage, 138
notifications, 146
nth-child selection, 105
number validation, 68
pseudo-classes, 106
reflections, 120
required attributes, 63
search function, 69
shadows, 123
text-shadows, 109
transformations, 126
URLs, 70
Web sockets, 155
weeks, 70

buttons, 38–39, 50

C
cache.manifest, 133–134
callback functions, 141, 143, 155
canvas

about, 163
animation coding, 192, 193–194, 195–196, 197
arcs, coding, 179–180
basics, 164–165
bezier curves, coding, 183–184
circles, coding, 179–180
fill and strokes, 166–171
gradients, coding, 167
images, basics, 184–187
images, coding, 185, 186
images with transformations, 187–191
line-drawing options, coding, 177–178
path mechanism, coding, 174–175
pixel manipulation, 197–200
quadratic curves, coding, 182
rectangles, coding, 171–172
setup, coding, 164–165
shapes, complex, 175–184
shapes, essential, 171–174
text, coding, 172–173
tiled patterns, coding, 169–170
transformations, coding, 188–189

<canvas> tag, 4, 5, 6, 7, 8, 51–53

captions, 47
Cascading Style Sheets (CSS)

about, 71
borders, 89–90, 118–119
coding. See coding
elements, 103, 106–114. See also visual elements (CSS)
formatting, about, 72–82
formatting, float positioning, 93–102
formatting, pages, 82–93
in HTML, 5, 6–7, 16
for visual layout, 19
in XHTML, 17–18

case-sensitive coding, 17
cellphone geolocation support, 143–144
centering in HTML, 6, 16, 17
central processing unit (CPU), 156, 158
checkboxes in forms, 37–38
checked attribute, 46
checking features in your code, 9–12
child selection, 104–105
Chrome (Google)

early years, 3
gradient syntax, 116–118
Ogg/Theora/Vorbis, 55–56
rendering engines for, 12–13, 103

Chrome (Google), support for
canvas, 163
columns, 108
contact databases, 142
flexible box layout, 113
notifications, 146
number validation, 68
reflections, 119–120
search function, 69
SQLite, 139
text-stroke (color), 109
Web sockets, 155
WebSQL, 143

Chrome (Google) Frame, 13
Chrome (Google) version 6, 13
circles, 179–181
classes, CSS, 77–80
client sockets, 148
clients, thin, 156
client-server communication, 149
closing tags, 17
coding

on author’s website, 15, 41, 71, 129
canvas. See canvas
checking feature support, 9–12
for Chrome rendering engine embedding, 13
clean, 16
CSS formatting. See Cascading Style Sheets (CSS)
elements, 42–48, 49–55
formatting. See Cascading Style Sheets (CSS)
forms, 31–39, 58–63, 65–70, 98–99

202 Index

11_9781118012529-bindex.indd 20211_9781118012529-bindex.indd 202 3/21/11 8:57 AM3/21/11 8:57 AM

Index 203

habits, 8
images, 22–24
for Internet Explorer, 16
JavaScript, 50, 130–132, 135–137, 144, 146–147, 150–154,

158–161
links, 24–26
lists, 26–28
paragraphs, 22
problematical, 94
sections, 22
SQL, 139–142
tables, 28–30
validation. See validation
Web page setup, 19

color
balancing, 197
on canvas, 165, 166–169
with CSS, 16, 73–77, 114–115
in forms, 6, 65
hex, 82–85
of shadows, 123
of text-shadows, 109
text-stroke, 108–109

color stops, 167
columns, 6, 97–98, 107–108
combining images, 184, 187
<command> elements, 44
<command> tags, 46
commands, 44–45, 46
communications protocols, 148
comparison of browser features, 8
compliance with standards, 3, 8
computationally expensive problems, 156, 157
computer overview, 156
contact databases, 141–143
content layout, 17, 18
content management systems, 44
context

in graphics, 51, 163
in menus, 45

control points for quadratic curves, 181, 182
controls attribute, 49
conversion

fonts, 107
videos, 56

cookies, 131–132
coordinate systems, 188, 189, 191
core language simplicity, 5
corners, rounded, 7, 122
CPU (central processing unit), 156, 158
CSS (Cascading Style Sheets)

about, 71
borders, 89–90, 118–119
coding. See coding
elements, 103, 106–114. See also visual elements (CSS)
formatting, about, 72–82

formatting, float positioning, 93–102
formatting, pages, 82–93
in HTML, 5, 6–7, 16
for visual layout, 19
in XHTML, 17–18

currentTime attribute, 51
curve-drawing mechanisms, 181–182, 183
customization of servers, 156

D
data, images, 165
data options

about, 131–132
local storage, 7, 134–139
offline cache, 132–134
WebSQL database, 139–143

databases, 7, 19, 139–143
datalist elements, 58
dates in forms, 6, 65
datetime element, 65–66
datetime-local element, 66–67
deadlocks, 157
debated features, 8
definition lists, 47
delays, animation, 193
deploying animations, 193
details elements, 47, 48
detect.html page, 9
<dfn> tag, 47
dictionaries, 134–135
direction of travel, 145
disabled attribute, 46
display, 93–100
<div></div> tags, 22, 45–46
doctype definitions, 18
document.getElements, 130
document.querySelector, 131
documents, linking, 2
drawing, 51, 52–53. See also canvas
drop-down lists, 36

E
elements

in forms, 34
HTML, 6
media, 49–56
moving, 195–197
ruby, 56
selectors for, 6, 7
semantic markup, 42–49

e-mail addresses in forms, 6, 67
<embed> tag, 53–54
Embedded OpenType (EOT), 107

11_9781118012529-bindex.indd 20311_9781118012529-bindex.indd 203 3/21/11 8:57 AM3/21/11 8:57 AM

204 Index

embedding
Flash, 4
fonts, 6
forms, 58, 61
media, 53–54

encryption, 59
EOT (Embedded OpenType), 107
executeSql(), 141–142
ExplorerCanvas plugin, 52, 163

F
failure callback functions, 143
FFmpeg tool (video conversions), 56
fieldset elements, 58–59
<fieldset> tag, 34
<figcaption> tag, 47
<figure> tags, 48
figures, 48
fill and strokes, 165, 166–171
fillStyle(), 165
Firefox (Mozilla)

about, 2, 103
early years, 3
gradient syntax, 116–118
HTML5 suitability, 12
rendering engines for, 103
video limitations, 143
WebSQL limitations, 143

Firefox (Mozilla), support for
columns, 108
flexible box layout, 113
fonts, 107
shadows, 123
SQLite, 139
transition animation, 127
video, 55

Firefox (Mozilla) version 3, 42
Firefox (Mozilla) version 3.5, 65
Firefox (Mozilla) version 4, 155
Flash (Adobe)

eliminating, 55, 163, 191
embedding, 4, 54
video loading, 56

flexible box layout, 110–114
float positioning in CSS, 93–102, 110
floating point numbers, 68
focus pseudo-class, 106
fonts

in addresses, 42
on canvas, 165
in CSS, 88, 106–107
in definitions, 47
early years, 4
in HTML, 4, 6, 16, 17

in screenshots, 19
with shadows, 174

<footer> tags, 6, 43
foreground color, 115
forgiving features, 17
<form> tag, 33
formats, video, 55–56
formatting, 16, 17, 48. See also Cascading Style Sheets

(CSS)
forms

about, 30–33
action buttons, 39
checkboxes, 37–38
in CSS, 95–100
early years, 4
elements, 57–70
improvements, 5
lists, 36
password fields, 35
radio buttons, 38–39
structure tags, 33–34
text boxes, 34–35
updates, 6

frames, 16, 17, 18
framework for Web application development, 4
FTP, 148

G
gaming, 13, 163
Gecko browsers/engines, 12, 113
geolocation, 7, 143–146
geometric transformations, 124
Global Positioning System (GPS) units, 143–144, 145
Google Chrome

early years, 3
gradient syntax, 116–118
Ogg/Theora/Vorbis, 55–56
rendering engines for, 12–13, 103

Google Chrome, support for
canvas, 163
columns, 108
contact databases, 142
flexible box layout, 113
notifications, 146
number validation, 68
reflections, 119–120
search function, 69
SQLite, 139
text-stroke (color), 109
Web sockets, 155
WebSQL, 143

Google Chrome Frame, 13
Google Chrome version 6, 13
Google Gears extension, 145

11_9781118012529-bindex.indd 20411_9781118012529-bindex.indd 204 3/21/11 8:57 AM3/21/11 8:57 AM

Index 205

GPS (Global Positioning System) units, 143–144, 145
gradients, 7, 115–118, 166–169
graphics. See images

H
<h1> - <h6> elements, 44
H.264 video encoding, 56
Harris, Andy (author)

animations, on Web site, 192
code fragments, on Web site, 15, 41, 71, 129
color balancing, on Web site, 198–199
color samples, on Web site, 73, 115
HTML, XHTML, and CSS All-in-One For Dummies, 7, 15, 102,

139, 169
JavaScript and AJAX For Dummies, 7, 63, 64, 129, 139

<head> elements, 44
<header> tags, 44
headers, 6, 44
heading (direction of travel), 145
heading tags, 44
hex colors, 82–85, 166
<hgroup> tags, 44
hover pseudo-class, 106
HSB color model, 85
HSL (hue, saturation, and lightness) model, 114–115, 166
HSLA (hue, saturation, lightness, and alpha value) model,

115, 166
HSV (hue, saturation, and value) model, 115
HTML

drop-down lists in, 36
foundations of, 16–19
history of, 2–5
pages. See Web pages
setup, 153–154
XHTML, 4, 5, 17–18, 36

HTML, XHTML, and CSS All-in-One For Dummies (Harris),
7, 15, 102, 139, 169

HTML 2, 3
HTML 3.2, 3
HTML 4, 3, 4, 16–17
HTML5. See also specific browsers, such as Google Chrome;

specific topics
about, 18–19
changes since HTML 4, 4–6
elements. See elements
forms. See forms

HTTP (HyperText Transfer Protocol), 148
hue, saturation, and lightness (HSL) model, 114–115, 166
hue, saturation, and value (HSV) model, 115
hue, saturation, lightness, and alpha value (HSLA) model,

115, 166
hyperlinks, 2, 24–26, 81–82
hypertext markup language. See HTML
HyperText Transfer Protocol (HTTP), 148

I
icons, 46
IE. See Internet Explorer (IE)
images

background, 90–93, 109
basics, 184–187
as borders, 118–119
on canvas. See canvas
coding, 22–24
context with tags, 163
inside figures, 48
interactive, 6
in Mosaic browser, 2
as patterns, 169–171
pixel manipulation, 197–200
rotation of, 124
with transformations, 187–191
vector-based, 7

 tag, 6, 17
IndexedDB (WebSQL), 143
inline layout, 95
inline semantic elements, 46–49
<input> element, 6
input tags, 34
input types, 64–70
integers, 68
intellectual property rights, fonts, 107
interactive graphics, 6
Internet Explorer (IE)

canvas functionality, 52
early years, 3
geolocation limitations, 145
HTML5 suitability, 12, 13
support for local storage, 138
transition animation limitations, 127
video format limitations, 55–56

Internet Explorer (IE) version 6, 16
Internet Explorer (IE) version 9

CSS limitations, 103
scalable vector graphics in, 55
standards compliance, 8
support for canvas, 163
support for flexible box layout, 114
support for fonts, 107
support for nth-child selection, 105
text-shadows limitations, 109
transformations limitations, 126
Trident engine, 12

inverse selection, 104
iPads, 12
iPhones, 12, 103, 116–118, 145
IrfanView (photo processing), 93

11_9781118012529-bindex.indd 20511_9781118012529-bindex.indd 205 3/21/11 8:57 AM3/21/11 8:57 AM

206 Index

J
Java, 4, 163
JavaScript (JS)

about, 5, 129
angles, 180–181
animation, 165
as application-development framework, 129
audio coding, 50, 51
for client-side programming, 19
CSS modification through, 16
data options. See data options
in forms, 30
geolocation, features of, 143–146
for HTML5 programming, 6–7
notifications, features of, 146–148
numeric values, 60, 136–137
output, 61
progress tag, 62
security risks with, 35
selection options, 130–131
video control, 56
Web sockets features, 148–156
Web workers features, 156–161

JavaScript and AJAX For Dummies (Harris), 7, 63, 64, 139
jQuery UI, 57
JSON data storage, 139

K
keygen elements, 59
KHTML project, 12

L
<label> tag, 34
labeling, 34, 46, 59–60
layout

content separation from, 8, 17
with CSS, 16
display, 93–100
early years, 8

<legend> tag, 34
levels of CSS, 80–82
lightness, 114–115
linear gradients, 115, 118, 167–168
line-drawing options, 176–177
links, 2, 24–26, 81–82
lists, 26–28, 36, 45, 47
local storage, 134–139
local styles, 74–77
lower-contrast images, 92–93
luminance, 115

M
Macs, 12
magazine-style text flow, 108
makeContact function, 141
malicious code, 131
margins, 98
mathematical transformation, 124
media elements, 6, 49–56
<menu> tags, 44–45, 46
menus, 44–45, 46, 47
messages, sending, 155
metadata, 44
meter tags, 60
Microsoft Internet Explorer

canvas functionality, 52
early years, 3
geolocation limitations, 145
HTML5 suitability, 12, 13
support for local storage, 138
transition animation limitations, 127
video format limitations, 55–56

Microsoft Internet Explorer version 6, 16
Microsoft Internet Explorer version 9

CSS limitations, 103
scalable vector graphics in, 55
standards compliance, 8
support for canvas, 163
support for flexible box layout, 114
support for fonts, 107
support for nth-child selection, 105
text-shadows limitations, 109
transformations limitations, 126
Trident engine, 12

Microsoft proprietary font, 107
mobile browsers

in active mode, 106
iPads, 12
iPhones, 12, 103, 116–118, 145
Opera, 13
rendering engines for, 12, 13
Safari, 119–120
support for geolocation, 143–144, 145
URLs in, 70

Modernizr (script), 9
month element, 67
-moz-, 103, 112
Mozilla Firefox

about, 2
early years, 3
gradient syntax, 116–118
HTML5 suitability, 12
rendering engines for, 103
video limitations, 143
WebSQL limitations, 143

11_9781118012529-bindex.indd 20611_9781118012529-bindex.indd 206 3/21/11 8:57 AM3/21/11 8:57 AM

Index 207

Mozilla Firefox, support for
columns, 108
flexible box layout, 113
fonts, 107
shadows, 123
SQLite, 139
transition animation, 127
video, 55

Mozilla Firefox version 3, 42
Mozilla Firefox version 3.5, 65
Mozilla Firefox version 4, 155
MP4/H.264/AAC, 56
multiline text boxes, 35
multitasking computers, 156
multiuser applications, 156
MySQL, 7, 139

N
name attribute, 38
name-value pairs, 47
<nav> tags, 45
navigation, 6, 34, 45
Navigator, 2–3
navigator.geolocation.watchPosition()

function, 146
nested tags, 17
Netscape Navigator, 2–3
Nintendo DS Browser, 13
not selection, 104
notifications, 146–148
nth-child selection, 104–105
numbers in forms, 6, 67–70
numeric values, 60, 135–137

O
-o-, 103
offline cache, 132–134
offset, 109, 123
Ogg/Theora/Vorbis format, 55
onclick attribute, 46
onClose function, 155
one-off tags, 17
onError function, 155
Online Font Converter, 107
onMessage function, 155
onOpen function, 155
opacity, 114, 115
open source products, 12, 107. See also Firefox (Mozilla)
OpenType Format (OTF), 107
Opera

early years, 3
limitations, flexible box layout, 114
rendering engine for, 13, 103

Opera, support for
canvas, 163
datalists, 58
number validation, 68
output, 61
shadows, 123
transition animation, 127
WebSQL, 143

Opera Mobile, 13
Opera version 10, 65
operating systems, 156
Oracle, 7, 139
order of transformations, 191
ordering of Web pages, 110
OTF (OpenType Format), 107
output, 61, 142–143

P
padding (boundary), 98
paragraphs, 22, 77–80
parameters in SQL, 142–143
password fields, 35
path mechanism, 165, 174–175
patterns, 62–63, 169–171
pause attribute, 50
persistent connections, 148
photos as background images, 92
PHP, 7, 19, 30, 149
pitfalls

background images, 92
display, 93–95
flexible box layout, 113–114

pixel manipulation, 163, 197–200
placeholder attribute, 63
play attribute, 50
plugins, 4, 52, 53–54, 57, 163
pop-up menus, 45
portable browsers, 13
positioning of elements in CSS, 16, 93–102
<p></p> coding, 22
preload attribute, 49–50
Presto engine, 13
privacy with local storage, 138
programming. See also coding

CSS integration with, 19
interactive graphics, 6
JavaScript, 5, 7
sockets, 148, 149
Web interface, 3

<progress> tag, 61–62
proprietary tags, 4
pseudo-classes, 106
Python Web sockets, 149

11_9781118012529-bindex.indd 20711_9781118012529-bindex.indd 207 3/21/11 8:57 AM3/21/11 8:57 AM

208 Index

Q
quadratic curves, 181–182
queries in SQL, 142
“QUOTA_EXCEEDED_ERR” message, 138

R
race conditions, 157
radial gradients, 115, 117, 118, 169
radians, 180–181
radio buttons, 38–39
ranges, numeric, 60, 67–69, 136–137
readability of fonts, 107, 109, 174
rectangles, 171–172
red, green, and blue (RGB) model, 114, 166
red, green, blue, and alpha value (RGBA) model, 114, 166
reflections, 119–121
relational databases, 139
rendering engines, 12, 103
repeatable functions, animation, 193
required attribute, 63
reset buttons, 39
RGB (red, green, and blue) model, 114, 166
RGBA (red, green, blue, and alpha value) model, 114, 166
rotation of images, 124, 187, 189
rounded corners, 7, 122
<rp> tags, 56
<rt> tags, 56
Ruby markups, 56
<ruby> tag, 56

S
Safari (Apple)

early years, 3
gradient syntax, 116–118
Mobile, 119–120
Ogg/Theora/Vorbis, 55–56
WebKit engine, 12, 103

Safari (Apple), support for
canvas, 163
columns, 108
flexible box layout, 113
reflections, 119–120
search function, 69
text-stroke (color), 109
Web sockets, 155
WebSQL, 143

saturation, 114–115
scalable vector graphics (SVG), 7, 54–55
scaling, 124, 187, 189
screenshot fonts, 19
scripting, Modernizr, 9
search element, 69
search engines, Flash challenges, 4

section element, 45–46
sections, 6, 22, 45–46
security

encryption, 59
geolocation API, 145
with local storage, 134, 138
malicious code, 131
in password fields, 35

select boxes, 36
selectors, elements, 6, 7
semantic markup, 5, 6, 42–49
semantic page elements, 42–46
sending messages, 155
servers, 7, 148, 150, 156
server-side languages, 19
setAttribute, 50
setup

canvas, 164–165
forms, 31–33
HTML, 153–154
Web pages, 19–21

shadows, 7, 122–124, 165, 173–174
shapes

complex, 165, 175–184
defining, 165
essential, 171–174
gradients within, 166–167
with shadows, 173–174

showMap function, 144–145
sidebars, 43
six-digit hex values, 166
skewing objects, 124
sockets, Web, 148–156
<source> tag, 54, 56
speed of travel (geolocation), 145
sprite sheets, 187, 196
SQL (Structured Query Language), 7, 139, 142–143
SQLite, 139
src tag, 50
SSH client, 148
standard buttons, 39
standards

Cascading Style Sheets (CSS), 6
early years, 2–3
evolution of, 4
HTML, 8, 16, 17
MP4, 56
WebM, 56
World Wide Web Consortium (W3C), 3, 4, 8, 18, 40, 55
XHTML, 4, 8, 17

startWorker(), 158
stateless HTTP protocol, 148, 149
stopWorker(), 158
storage

of images, 197–198
local, 134–139

11_9781118012529-bindex.indd 20811_9781118012529-bindex.indd 208 3/21/11 8:57 AM3/21/11 8:57 AM

Index 209

offline cache, 132–134
of transformations, 191
WebSQL database, 139–143

storage on the client, 7
strokes and fill, 165, 166–171
strokeStyle, 165
structure

in HTML, 16
tags, 33–35
validating, 17

Structured Query Language (SQL), 7, 139, 142–143
styles

buttons, 50
CSS. See Cascading Style Sheets (CSS)
headings, 21
in HTML5, 5
local, 74–77

subimage technique, 187
submit buttons, 39
subtractive color model, 83
success callback functions, 143
summary tag, 48
SVG (scalable vector graphics), 7, 54–55
<svg> elements, 54–55
syntax, 17, 18, 19, 116–117

T
tables

coding, 28–30
in CSS, 95–100
eliminating, 59
as outdated, 16, 18

tags
address, 42
articles, 42–43
audio, 49–50
for buttons, 39
canvas, 4, 5, 6, 7, 8, 51–53
captions, 47
command, 46
definition, 47
details, 48
embedding, 53–54
figures, 48
footers, 43
in forms, 33–34
headers, 44
headings, 44
in HTML5, 18
input, 64–65
labeling, 59–60
media elements, 6
menus, 44–45
meter, 60

navigation, 45
progress, 61–62
proprietary, 4
<rp>, 56
<rt>, 56
Ruby, 56
sections, 43, 45–46
for semantic markup, 6, 42
sidebars, 43
source, 50, 54, 56
structure, 33–35
style, 77
summaries, 48
video, 55
XHTML, 17

task-switching algorithm, 156
telephone numbers, 69
Telnet, 148
text

alignment, 98
on canvas, 165
in CSS, 85–88, 108–110
datalists, 58
drawing, 172–173
magazine-style flow, 108
with shadows, 174

text boxes in forms, 34–35
text-shadow, 109–110
text-stroke (color), 108–109
Theora video encoding, 55
thin clients, 156
third-party add-ons, 57
threading, 156–157, 158
3D drawing, 52
three-digit hex values, 166
tiled patterns, 169–171
time, 48, 70
time element, 48
time zones, 48, 65–66
titles, 47, 63
toolbar commands, 45
transactions, 140, 148
transformations

about, 124–126
CSS enhancements, 7
of images, 165
images with, 187–191

transition animation, 126–127
translation of images, 187, 189
transparency

color, 85, 114, 115
in CSS, 7, 128

Trident engine, 12
TrueType format (TTF), 107
2D/3D drawing, 52
two-column layout, 97–98

11_9781118012529-bindex.indd 20911_9781118012529-bindex.indd 209 3/21/11 8:57 AM3/21/11 8:57 AM

210 Index

type attributes
in forms, 34, 39, 64–70
in menu behavior, 45
in semantic elements, 47

U
URL in forms, 70

V
validation

of forms, 62, 63–64, 65
HTML, 16, 18
menu coding, 47
of numbers, 68
Web pages, 40
XHTML, 17, 18

vector graphics, 7, 54
vector-drawing techniques, 184, 188
video, 6, 10–12, 55–56
<video> tag, 55
visual elements (CSS)

color, 114–115
gradients, 115–118
image borders, 118–119
reflections, 119–121
rounded corners, 122
shadows, 122–124
transformations, 124–126
transition animation, 126–127
transparency, 128

visual enhancements, 7
volume attribute, 51
Vorbis audio encoding, 55, 56
VP8 video encoding, 56

W
W3C (World Wide Web Consortium)

early years, 3
HTML5, 18
scalable vector graphics, 55
validation tools, 18, 40
XHTML, 4, 8

wbr element, 49
Web addresses in forms, 70
Web applications, 3, 4
Web Hypertext Application Technology Working Group

(WHATWG), 4
Web Open Font Format (WOFF), 107

Web pages
consistency between, 134
in CSS, 82–93
early years, 4
forms, 30–39
images, 22–24
links, 24–26
lists, 26–28
ordering of, 110
setup, 19–21
tables, 28–30
validation, 40

Web servers, 148
Web sockets, 148–156
Web workers, 156–161
Web-based document standards, 3
WebKit-based browsers

about, 12–13, 103
flexible box layout, 113
gradient syntax, 116–117
reflections, 119–120
support for shadows, 123
support for transition animation, 127

WebM/VP8/Vorbis, 56
WebSQL database, 139–143
week element, 70
WHATWG (Web Hypertext Application Technology

 Working Group), 4
Wii Internet Channel, 13
Wikipedia as browser information source, 13
WOFF (Web Open Font Format), 107
word breaks, 49
World Wide Web Consortium (W3C)

early years, 3
HTML5, 18
scalable vector graphics, 55
validation tools, 18, 40
XHTML, 4, 8

X
XForms, 57
XHTML

about, 17–18
drop-down lists in, 36
HTML5 compared with, 5
introduction of, 4
shortcomings of, 8

XML
local storage of, 139
standards, 4
syntax, 18
in vector graphics, 55

11_9781118012529-bindex.indd 21011_9781118012529-bindex.indd 210 3/21/11 8:57 AM3/21/11 8:57 AM

Area to cut and punch

.9375

I
S
B
N

9
7
8
-
1
-
1
1
8
-
0
1
2
5
2
-
9

TE
CH

NICAL STUFF

Welcome to HTML5 For Dummies Quick Reference. Keep this book within
arm’s reach to find quick answers to your questions.

This is a For Dummies book, so you have to expect
some snazzy icons, right? I don’t disappoint. Here’s
what you’ll see:

This is where I pass along any small insights I may
have gleaned in our travels.

A lot of details here. I point out something important
that’s easy to forget with this icon.

Watch out! Anything I mark with this icon is a place
where things have blown up for me or my students. I
point out any potential problems with this icon.

I can’t really help being geeky once in a while. Every
so often I want to explain something a little deeper.
Read this to impress people at your next computer
science cocktail party or skip it if you really don’t
need the details.

HTML is the predominant programming language used to create Web pages.
HTML5 is the most recent update to the HTML standard which is maintained
and governed by the World Wide Web Consortium (W3C). HTML5 represents
a major change to HTML — arguably the most substantial change since the
development of XHTML. HTML5 has enhanced rich media, geolocation,
database and mobile capabilities, and is now able to script APIs.

This book covers the fundamentals for developing Web sites using HTML5
by utilizing clear-cut tasks, code examples, step-by-step instructions, and
easy-to-follow advice. This book provides seasoned and new Web programmers
and developers with a fast reference for getting up to speed on HTML5.

Mobile Apps

There’s a Dummies App
for This and That
With more than 200 million books in print and over
1,600 unique titles, Dummies is a global leader in
how-to information. Now you can get the same great
Dummies information in an App. With topics such as
Wine, Spanish, Digital Photography, Certification, and
more, you’ll have instant access to the topics you
need to know in a format you can trust.

To get information on all our Dummies apps, visit the following:

www.Dummies.com/go/mobile from your computer.

www.Dummies.com/go/iphone/apps from your phone.

http://www.Dummies.com/go/mobile
http://www.Dummies.com/go/iphone/apps

HTML5
Making Everything Easier!™

• Create rich Internet applications
using HTML5

• Build mobile sites with video

• Leverage the HTML5 database
capabilities

• Test, debug, and deploy your sites

Learn to:

Andy Harris
Author of HTML, XHTML, and CSS
All-in-One For Dummies

Go to Dummies.com®

for videos, step-by-step examples,
how-to articles, or to shop!

 Open the book and find:

• Which browsers support the new tools

• Media elements, including a video tag

• Additional pseudo-classes in CSS

• New form input types

• How to add shadows and
colorful shapes

• Tips on building Web socket
connections

• How a Web worker improves
efficiency

• Steps for creating animation

Programming Languages/HTML

$18.99 US / $22.99 CN / £14.99 UK

ISBN 978-1-118-01252-9
Andy Harris taught himself programming because
it was fun. Today he teachers computer science,
game development, and Web programming at the
university level and is a technology consultant
for the State of Indiana.

HTML is the preferred programming language for creating
Web pages, and HTML5 is full of new features. This handy,
no-nonsense book gives you the straight scoop. You’ll
discover enhanced rich media, geolocation, database and
mobile capabilities, what’s new in CSS and JavaScript, and
how to use the new canvas tag. Find what you need quickly
and make your Web site a winner!

• A matter of semantics — get up to speed on new semantic
page elements and in-line semantic elements

• Informed about forms — examine new and modified form
elements that add new capabilities to HTML

• Celebrate CSS — discover the new tools and functionality
in CSS3, including flexible box layout and improved font
and text support

• Brew up something new — explore new JavaScript®

features such as drag-and-drop, geolocation,
notifications, and Web sockets

• Canvas for cool — use the canvas tag and JavaScript
to create cool and colorful graphics

Quick and up-to-date
information about HTML5
and how to use it

Visit the companion Web site at www.dummies.com/

go/html5fdqr for bonus content.

Area to cut and punch

.9375”

http://www.dummies.com/go/html5fdqr

	HTML5 For Dummies Quick Reference
	Table of Contents
	Part 1: Moving on to HTML5
	A Quick History of HTML
	Getting to Know the Real HTML5
	HTML5 Is More than HTML!
	Looking At Browser Features
	Picking a Suitable Browser
	Using Chrome Frame to Add Support to IE

	Part 2: HTML Foundations
	Exploring HTML and XHTML
	Fleshing Out Your Page
	Making a Form
	Validating Your Pages

	Part 3: New or Changed HTML5 Elements
	Semantic Page Elements
	Inline Semantic Elements
	Media Elements
	Ruby Elements

	Part 4: New and Modified Form Elements
	New Form Elements
	New Form Element Attributes
	New Form Input Types

	Part 5: Formatting with CSS
	A Quick Overview of CSS
	Managing the Appearance of Your Page
	Using Float Positioning

	Part 6: New and Improved CSS Elements
	CSS3’s New Selection Tools
	Downloadable Fonts and Text Support
	Flexible Box Layout Model
	New Visual Elements

	Part 7: Changes in JavaScript
	Behold: The New JavaScript Selection Options
	Data Options
	Miscellaneous New JavaScript Features

	Part 8: Working with the Canvas
	Canvas Basics
	Controlling Fill and Stroke Styles
	Drawing Essential Shapes
	Drawing More Complex Shapes
	Images
	Manipulating Images with Transformations
	Using Animation
	Working with Pixel Manipulation

	Index

HTML5

